Применение синхронных генераторов

Синхронный генератор: устройство, виды и применение

Синхронный генератор – специальное устройство, посредством которого удается преобразовать любую энергию в электрическую. В роли таких устройств выступают мобильные станции, термические или солнечные батареи, специальная техника. В зависимости от вида генератора определяется возможность его использования, поэтому стоит подробнее разобраться с тем, что представляет собой устройство.

История создания

В конце XIX века компания Роберта Боша впервые разработала нечто похожее на генератор. Устройство было способно зажечь двигатель. В процессе испытаний было выявлено, что машина не подходит для постоянного использования, однако разработчики смогли усовершенствовать аппарата.

В 1890 году фирма практически полностью перешла на производство данного оборудования, так как оно приобрело большую популярность. В 1902 ученик Боша создал зажигание, задействуя высокое напряжение. Устройство было способно добыть искру между двумя электродами свечи, что сделало систему более универсальной.

Начало 60-х годов XX века стало эпохой распространения генераторов по всему миру. И если раньше устройства были востребованы только в автомобилестроении, то сейчас подобные агрегаты способны обеспечить электроэнергией целые дома.

Устройство и назначение

Конструкция подобных агрегатов задействует только два главных элемента:

При этом на валу ротора предусмотрены дополнительные элементы. Это могут быть магниты или обмотка возбуждения. У магнитов зубчатая форма, полюса для получения и передачи тока направлены в разные стороны.

Главная задача генератора заключается в преобразовании одного вида энергии в электрическую. С его помощью удается обеспечить необходимым количеством тока зависимые устройства, чтобы можно было ими воспользоваться.

Характеристики

Чтобы оценить работоспособность генератора, необходимо посмотреть на его характеристики. В принципе они такие же, как у станции, вырабатывающей постоянный ток. Главными параметрами оценки являются несколько факторов.

  • Холостой ход. Представляет собой зависимость ЭДС от силы движущихся токов, отвечающих за возбуждение демпферной катушки. С его помощью удается определить способность цепей намагнититься.
  • Внешняя характеристика. Подразумевает параллельную связь между напряжением катушки и нагрузочным током. Величина зависит от типа прикладываемой к устройству нагрузки. Среди причин, способных вызвать изменения, выделяют увеличение или уменьшение ЭДС агрегата, а также падение напряжения на обмотках установленной катушки, которая помещена внутрь устройства.
  • Регулировка. Представляет зависимость, которая образуется между токами возбуждения и нагрузочным током. Обеспечение работоспособности и защиты синхронных агрегатов достигается за счет отслеживания данного показателя. Достичь этого несложно, если постоянно проводить настройку ЭДС.

Еще один важный параметр – это мощность. Определить значение можно посредством показателей ЭДС, напряжения и углового сопротивления.

Принцип действия

С принципом работы устройства разобраться не так уж сложно. Он заключается во вращении магнитной рамки с целью создания электрического поля. В процессе вращения рамки возникают магнитные линии, начинающие пересекать ее контур. Пересечение способствует образованию электрического тока.

Чтобы определить, куда движутся потоки электрической энергии, необходимо воспользоваться правилом буравчика. При этом стоит отметить, что на некоторых участках движение тока противоположное. Направления постоянно меняются при достижении очередного полюса, который расположен на магните. Такое явление называется переменным током, и доказать это условие способно подключение рамки к отдельному магнитному кольцу.

Зависимость между величиной тока в рамке и скоростью вращения ротора системы пропорциональная. Таким образом, чем сильнее будет вращаться рамка, тем больше электричества сможет поставить генератор. Такой показатель характеризуется частотой вращения.

Согласно установленным нормам, оптимальный показатель частоты вращения в большинстве стран не должен превышать 50 Гц. Это значит, что ротор должен выполнять 50 колебаний в секунду. Для вычисления параметра необходимо условиться, что один поворот рамки приводит к изменению направления тока.

Если вал успевает повернуться 1 раз за секунду, это означает, что частота электрического тока составляет 1 Гц. Таким образом, для достижения показателя в 50 Гц потребуется обеспечить правильное количество вращений рамки за секунду.

В процессе эксплуатации нередко происходит возрастание числа полюсов электромагнита. Их удается задержать посредством уменьшения скорости, с которой вращается ротор.

Зависимость в этом случае обратно пропорциональная. Таким образом, чтобы обеспечить частоту в 50 Гц, потребуется снизить скорость примерно в 2 раза.

Дополнительно стоит отметить, что в некоторых странах установлены другие нормы вращения ротора. Стандартным показателем частоты является показатель в 60 Гц.

Сегодня производители выпускают несколько видов синхронных генераторов. Среди существующих классификаций особого внимания заслуживают несколько. В первую очередь стоит рассмотреть деление агрегатов по конструктивному устройству. Генераторы бывают двух видов.

  • Бесщеточный. Конструкция электрогенератора подразумевает использование обмоток статора. Они размещены так, чтобы сердечники элементов совпадали с направлением либо магнитных полюсов, либо сердечников, которые предусмотрены на катушке. Максимальное количество зубьев магнита не должно превышать 6 штук.

  • Синхронный, оборудованный индуктором. Если речь идет о регулировочных машинах, работающих на небольшой мощности, то в качестве ротора используют магниты постоянного тока. В противном случае ротором является обмотка индуктора.

Следующая классификация подразумевает деление мобильных станций на отдельные виды.

  • Гидрогенераторы. Отличительная черта устройства – ротор с выраженными полюсами. Такие агрегаты используют для производства электроэнергии там, где нет необходимости в обеспечении большого количества оборотов устройства.

  • Турбогенераторы. Отличие – отсутствие выраженных полюсов. Устройство собирают из различных турбин, оно способно в несколько раз повысить количество оборотов ротора.

  • Синхронные компенсаторы. Используется для достижения реактивной мощности – важного показателя на промышленных объектах. С его помощью удается повысить качество подаваемого тока и стабилизировать показатели напряжения.

Выделяют несколько распространенных моделей подобных устройств.

  • Шаговые. Их используют для обеспечения работоспособности приводов, установленных в механизмах, которые имеют цикл работы старт-стоп.

  • Безредукторные. В основном используются в автономных системах.

  • Бесконтактные. Востребованы в качестве основных или резервных мобильных станций на судах.

  • Гистерезисные. Такие генераторы задействуют для счетчиков времени.

  • Индукторные. Обеспечивают работу электроустановок.

Еще один вид деления агрегатов – тип используемого ротора. В этой категории генераторы делятся на устройства с явнополюсным ротором и неявнополюсным.

Первые представляют собой устройства, в которых четко просматриваются полюса. Они отличаются небольшой скоростью вращения ротора. Вторая категория имеет в своей конструкции цилиндрический ротор, у которого отсутствуют выступающие полюса.

Область применения

Синхронные генераторы – устройства, предназначенные для добычи переменного тока. Встретить такие устройства можно на различных станциях:

А также агрегаты активно используются в транспортных системах. Их применяют в различных автомобилях, в судовых системах. Синхронный генератор способен работать как в автономном режиме, отдельно от электрической сети, так и одновременно с ней. При этом удается подключить сразу несколько агрегатов.

Преимуществом станций, вырабатывающих переменный ток, является возможность обеспечить выделенное пространство электроэнергией. Удобно, если объект находится далеко от центральной сети. Поэтому агрегаты пользуются спросом у владельцев ферм, отдаленных от города населенных пунктов.

Как выбрать?

При выборе генератора важно найти подходящее и надежное устройство, которое сможет обеспечить электроэнергией отведенную площадь. Для начала необходимо определиться с техническими параметрами будущего устройства. Специалисты советуют обратить внимание на:

  • массу электрогенератора;
  • габариты устройства;
  • мощность;
  • расход топлива;
  • показатель шума;
  • продолжительность работы.

А также важным параметром является возможность организации автоматической работы. Чтобы понять, сколько фаз требуется будущему генератору, необходимо определиться с типом и количеством электроприборов, которые будут к нему подключаться.

Например, к однофазному электрогенератору могут подключиться только потребители с одной фазой. Трехфазная заметно расширяет этот показатель.

Однако не всегда покупка подобной мобильной электростанции становится лучшим решением.

Перед покупкой дополнительно рекомендуется учесть нагрузку, которая будет оказана на устройство во время его работы. На каждую фазу должна приходиться нагрузка максимум в 30% от общего количества. Таким образом, если мощность генератора составляет 6 кВт, то в случае использования розеток с напряжением в 220 В удастся задействовать только 2 кВт.

Покупка трехфазного генератора востребована только тогда, когда в доме много трехфазных потребителей. Если большинство приборов однофазные, лучше приобрести соответствующий агрегат.

Эксплуатация

Перед запуском электрогенератора необходимо сначала провести его регулировку. В первую очередь настраивают частоту работы устройства. Сделать это можно двумя способами:

  1. поменять конструкцию агрегата, заранее предусмотрев, какое количество полюсов необходимо для работы электромагнита;
  2. обеспечить требуемую частоту вращения вала без каких-либо изменений в конструкции.

Яркий пример – тихоходные турбины. Они обеспечивают вращение ротора в 150 оборотов в минуту. Для настройки частоты используют первый способ, увеличивая количество полюсов до 40 штук.

Следующим параметром, который необходимо настроить, является ЭДС. Возникает необходимость регулировки из-за изменений характеристик поступающих нагрузок, действующих на мобильную станцию.

Несмотря на то что ЭДС индукции устройства связана с ротором и его вращениями, из-за требований безопасности нельзя разбирать конструкцию, чтобы поменять параметр.

Изменить величину ЭДС можно посредством регулировки образующегося магнитного потока. Его необходимо будет увеличить или уменьшить. За величину показателя отвечают витки обмотки, а точнее, их количество. А также повлиять на мощность магнитного потока можно посредством тока, который образует катушка.

Наладка подразумевает включение в цепь нескольких катушек. Для этого необходимо воспользоваться дополнительными реостатами или электронными схемами. Второй вариант требует настройки параметра за счет внешних стабилизаторов. Это обеспечивает надежное обслуживание.

Преимущество синхронной мобильной станции – это возможность синхронизации с другими электромашинами подобного типа. При этом во время подключения удается сопоставить скорости вращения и обеспечить нулевой фазовый сдвиг. В связи с этим мобильные электростанции востребованы в промышленной энергетике, где очень удобно их использовать в качестве резервного источника тока для повышения производственных мощностей в случае больших нагрузок.

О синхронном и асинхронном генераторе смотрите далее.


Устройство синхронного генератора и принцип действия

Разделы: Физика

Тип урока: Формирование новых знаний.

Цели урока:

  • Образовательная: Сформировать у студентов понятие о назначении синхронного генератора, его устройстве и принципе действия.
  • Воспитательная: Привить студентам интерес к дисциплине и навыки работы в коллективе.
  • Развивающая: Способствовать развитию самостоятельности мышления. Развивать творческую деятельность.
  • Дидактическая: Научить использовать различные дидактические материалы. Показать формы и методы управления познавательной деятельностью обучающихся на уроке.

Наглядность на уроке:

  • Плакат «Синхронный генератор»
  • Настенный стенд «Машины переменного тока»
  • Макет синхронного генератора
  • Карточки-задания (Приложение 1)
  • Тесты для закрепления материала (Приложение 2)
  • Слайды на электронном носителе

Ход урока

1. Организационный момент:

1.2. Определение отсутствующих

1.3. Проверка готовности обучающихся к уроку

1.4. Организация внимания.

2. Целеполагание и мотивация:

2.1. Постановка цели перед студентами

2.2. Ознакомление студентов с планом урока

2.3. Формирование установок на восприятие и осмысление учебной информации.

3. Актуализация ранее усвоенных знаний:

Вопросы:

3.1. Какая электрическая машина называется генератором?

Ответ: Генератором называется электрическая машина, преобразующая механическую энергию в электрическую.

3.2. На каком законе электромагнетизма основан принцип действия генераторов?

Ответ: Принцип действия генератора основан на законе электромагнитной индукции: ЭДС индуктируется в двух случаях: при движении проводника в магнитном поле и при изменении магнитного потока вокруг проводника.

3.3. Что представляет собой магнитное поле?

Ответ: Магнитным полем называется материальная среда, обнаружить которую возможно только опытным путём – внеся в это поле другое намагниченное тело или проводник с током, так как вокруг проводника с током возникает магнитное поле.

3.4. Какое электротехническое устройство называется электромагнитом и для чего оно предназначено?

Ответ: Электромагнит – это электротехническое устройство, состоящее из катушки и ферримагнитного сердечника, предназначенное для создания магнитного потока.

3.5. Особые требования, предъявляемые к электрическим машинам ПС

Ответ: К основным требованиям, предъявляемым электрическим машинам ПС относятся:

  • частота вращения находится в пределах 50–12000 об/мин;
  • широкий диапазон мощностей (от десятков Вт до десятков МВт);
  • минимальные габариты, масса, нагрузка на ось, габариты совпадающие с габаритами подвижного состава;
  • высокую надёжность работы.

3.6. Специфические условия эксплуатации электрических машин ПС.

Ответ: К специфическим особенностям работы электрических машин ПС относятся:

  • колебание температуры окружающей среды (от -50°С до + 50°С);
  • колебание влажности (95*3%);
  • запыление машин, установленных на открытом воздухе, встречным потоком воздуха;
  • конструкция машин и условия размещения её на подвижном составе должны обеспечивать удобный доступ к обслуживаемым частям.

4. Формирование новых понятий:

Конспект урока

4.1. Синхронный генератор – это машина переменного тока, преобразовывающая какой-либо вид энергии в электрическую энергию.

Генератором называется электрическая машина, преобразовывающая механическую энергию в электрическую.

4.2. Почему машина называется синхронной?

Синхронной называется бесколлекторная машина переменного тока, скорость вращения которой постоянна и определяется (при заданной частоте) числом пар полюсов: n = 60*f/p; (f = 50 Гц), где р – количество пар полюсов.

Например: двадцатиполюсный генератор должен иметь скорость п = 60*50/10 = 300 об/мин.

4.3. Применение синхронных генераторов на железнодорожном транспорте

На железнодорожном транспорте синхронные машины чаще всего применяются в качестве генераторов переменного тока на тепловозах и в рефрижераторных секциях.

4.4. Индуктирование ЭДС в синхронных генераторах

Индуктирование ЭДС в синхронных генераторах осуществляется по закону электромагнитной индукции: E = B*L*U*sin L.

Рис.1. Принцип действия синхронного генератора.

Так как принципиально безразлично, будет ли движущийся проводник пересекать магнитное поле, или, наоборот подвижное магнитное поле будет пересекать неподвижный проводник, то конструктивно синхронные генераторы могут быть изготовлены двух видов. В первом из них (рис.1.а.) магнитные полюсы можно поместить на статоре, а проводник на роторе и снимать с них при помощи колец и щёток переменный ток.

Ту часть, которая создаёт магнитное поле, называют индуктором, а ту часть машины, где располагается обмотка, в которой индуктируется ЭДС, называют якорем.

Следовательно: в первом типе генератора индуктор неподвижен, а якорь вращается. В таких генераторах скользящий контакт в цепи большой мощности создаёт значительные потери энергии, а при высоких напряжениях наличие такого контакта становится нецелесообразным. Поэтому генераторы с вращающимся якорем и неподвижными кольцами выполняют только при невысоких напряжениях (до 380/220 В) и небольших мощностях (до 15 кВт).

Наиболее широкое применение получили синхронные генераторы, в которых полюсы помещены на роторе, а якорь – на статоре (рис.1.б.).

4.5. Однофазные и трёхфазные синхронные генераторы

Из курса электротехники известно, что если вращать ротор-индуктор, то в обмотке статора будет индуктироваться переменная ЭДС (рис.2.а.), Это явление лежит в основе устройства однофазного генератора переменного тока. Обмотку статора можно также сделать много фазной, но на практике наибольшее распространение получила трёхфазная система переменного тока (рис.2.б.).

Читайте также:  Принципы выбора металла

4.6. Устройство синхронного генератора

На тепловозах с передачей мощности переменно-постоянного и переменного тока в качестве тяговых используют синхронные генераторы, первичными двигателями которых служат двигатели внутреннего сгорания (дизели). Их также используют в качестве вспомогательных машин на тепловозах, электровозах и в пассажирских вагонах.

Рис.3. Устройство синхронного генератора.

Статор является неподвижной частью синхронной машины (рис.3.а.) и состоит из корпуса и сердечника, в пазах которого располагается статорная обмотка, предназначенная для индуктирования в ней ЭДС. Сердечник статора набирается из листов электротехнической стали толщиной 0,35 или 0,5 мм, в которых вырубают пазы для укладки проводников обмотки статора.

4.7. Явновыраженные и неявновыраженные полюса электромагнитов

Ротор синхронного генератора представляет собой вал, на котором укреплены сердечники полюсов в явновыраженных синхронных машинах (рис.3.б.) или набирают из листов электротехнической стали в неявновыраженных синхронных машинах (3.в.).

В высокоскоростных синхронных генераторах выполняются неявновыраженные полюса для обеспечения нужной механической прочности.

Рис.4. Явновыраженные и неявновыраженные полюса электромагнитов.

Обмотка возбуждения выполняется из медного провода прямоугольного сечения, концы которой выводятся на контактные кольца, установленные на роторе. Токосъём с контактных колец (плакат «Синхронный генератор») осуществляется с помощью щёток, установленных в щёткодержателях и прижимаемых к контактной поверхности пружинами.

В синхронных генераторах применяют два основных способа возбуждения: независимое (рис.5.а.) и самовозбуждение (рис.5.б.)

Рис.5. Независимое возбуждение и самовозбуждение машины.

При независимом возбуждении обмотка возбуждения питается от генератора постоянного тока с независимой обмоткой возбуждения, расположенного на валу ротора синхронного генератора и вращающегося вместе с ним (большой мощности).

При самовозбуждении питание обмотки возбуждения осуществляется самим синхронным генератором через выпрямитель (малой и средней мощности).

4.8. Принцип действия синхронного генератора

При помощи первичного двигателя ротор-индуктор вращается. Магнитное поле находится на роторе и вращается вместе с ним, поэтому скорость вращения ротора равна скорости вращения магнитного поля – отсюда название синхронная машина.

Рис.6. Генераторный режим работы синхронной машины.

При вращении ротора магнитный поток полюсов пересекает статорную обмотку и наводит в ней ЭДС по закону электромагнитной индукции: E = 4,44*f*w*kw*Ф, где:

f – частота переменного тока, Гц; w – количество витков; kw – обмоточный коэффициент; Ф – магнитный поток.

Частота индуктированной ЭДС (напряжения, тока) синхронного генератора: f = p*n/60, где:

р – число пар полюсов; п – скорость вращения ротора, об/мин.

Заменив: E = 4,44*(п*р/60)*w*kw и, определив: 4,44*(р/60)*w*kw относится к конструкции машины и создаёт конструктивный коэффициент: C = 4.44*(р/60)*w*kw.

Тогда: Е = СЕ*п*Ф.

Таким образом, как и у любого генератора, основанного на законе электромагнитной индукции, индуктированная ЭДС пропорциональна магнитному потоку машины и скорости вращения ротора.

4.9. Обратимость синхронного генератора

Синхронные машины применяются также в качестве электрического двигателя, особенно в установках большой мощности (свыше 50 кВт)

Рис.7. Двигательный режим работы синхронной машины.

Для работы синхронной машины в режиме двигателя обмотку статора подключают к трёхфазной сети, а обмотку ротора к источнику постоянного тока. В результате взаимодействия вращающегося магнитного поля машины с постоянным током обмотки возбуждения, возникает вращающий момент М, который увлекает его со скоростью магнитного поля.

4.10. Условия включения синхронного генератора в сеть

Для включения генератора в сеть необходимо:

  • одинаковое чередование фаз в сети и генераторе;
  • равенство напряжения сети и ЭДС генератора;
  • равенство частот ЭДС генератора и напряжения сети;
  • включать генератор в тот момент, когда ЭДС генератора в каждой фазе направлена встречно напряжению сети.

Невыполнение этих условий ведёт к тому, что в момент включения генератора в сеть возникают токи, которые могут оказаться большими и вывести генератор из строя.

5. Закрепление полученных знаний:

5.1. Контрольные вопросы:

– Какая электрическая машина называется генератором?

Ответ: Генератором называется машина, преобразовывающая механическую энергию в электрическую.

– Почему машина называется синхронной?

Ответ: Магнитное поле находится на роторе и вращается вместе с ним, поэтому скорость вращения магнитного поля равна скорости вращения ротора – из-за этого и название синхронная.

– По какому закону осуществляется индуктирование ЭДС в якоре машины?

Ответ: По закону электромагнитной индукции – ЭДС индуктируется в двух случаях: при движении проводника в магнитном поле или при изменении магнитного поля вокруг проводника.

– Какие два основных способов возбуждения Вы знаете?

Ответ: независимое возбуждение и самовозбуждение.

– Какая зависимость между р и п в синхронных генераторах при заявленной частоте переменного тока?

Ответ: Обратнопропорциональная зависимость: чем больше, тем меньше.

5.2. Работа с карточками-заданиями: (Приложение 1)

№1: Число пар полюсов синхронного генератора 4. Определить частоту вращения магнитного поля статора, если частота генерируемого тока 50 Гц.

f = 50 Гц; n = f*60/p = 50*60/4 = 750 об/мин.

№2: Какое количество полюсов должно быть у синхронного генератора с частотой ЭДС 50 Гц, если ротор его вращается с частотой 500 об/мин.

n = 500 об/мин; р = f*60/n = 50*60/500 = 6 пар.

№3: Генератор переменного тока имеет 10 пар полюсов и его ротор вращается с частотой 1200 об/мин. Сколько раз в секунду ток меняет своё направление?

n = 1200 об/мин; f/2 = p*n/60*2 = 10*1200/60*2 = 100 раз;

№4: Найти ЭДС, индуктируемую в одной фазе статора генератора переменного тока, если количество витков 24; обмоточный коэффициент 0,9; частота ЭДС 50 Гц, а магнитный поток 0,05 Вб.

kw = 0,9; Ф = 0,05 Вб; Е = 4,44*f*kw*w*Ф = 4.44*50*0,9*0,05 = 10 В.

№5: Выбрать необходимое число витков обмотки шестиполюсного синхронного генератора, ротор которого вращается с частотой 1000 об/мин, чтобы ЭДС на его выводах была 220 В, если магнитный поток, создаваемый обмоткой возбуждения ротора, равен 0,05 Вб, а обмоточный коэффициент статорной обмотки 0,92.

N = 6 полюсов; Ф = 0,05 Вб; Е = 4,44*f*w*kw*Ф;

n = 1000 об/мин; kw = 0,92; f = p*n/60 = (6/2)*1000/60 = 50Гц;

Определить: w = ? w = E/4,44*f*kw*Ф = 220/4,44*50*0,92*0,05 = 22 в.

5.3. Работа с тестами: (Приложение 2)

Вопрос

Ответ

1. Почему синхронный генератор называется синхронным?

  1. Скорость вращения ротора больше скорости вращения магнитного поля;
  2. Скорость вращения ротора равна скорости вращения магнитного поля;
  3. Скорость вращения ротора меньше скорости вращения магнитного поля.

2. Определить скорость двенадцатиполюсного синхронного генератора при частоте 50 Гц.

  1. 50 об/мин;
  2. 100 об/мин;
  3. 500 об/мин.

3. В каком генераторе, при заданной частоте, наибольшая скорость вращения?

  1. с явновыраженными полюсами;
  2. с неявновыраженными полюсами;
  3. в бесполюсном.

4. Можно ли трёхфазную обмотку синхронного генератора большой мощности расположить на роторе?

  1. можно;
  2. нельзя;
  3. можно, но нецелесообразно.

5. Четырёхполюсный ротор синхронного генератора вращается со скоростью 3000 об/мин. Определить частоту переменной ЭДС.

  1. 50 Гц;
  2. 100 Гц;
  3. 150 Гц.

Вопрос

1

2

3

4

5

Ответ

6. Рефлексия, задание на дом:

6.1. Подведение итогов урока, определение меры участия всех студентов и каждого в отдельности, оценка их работы.

6.2. Мотивирование домашнего задания.

6.3. Краткий инструктаж по выполнению домашнего задания.

6.4. Вопросы к студентам по восприятию урока.

Список используемой литературы:

  1. В.А. Поляков «Электротехника»; Учебное пособие; М. «Просвещение»; 1982, 239 с.
  2. А.Е. Зорохович, В.К. Калинин «Электротехника с основами промышленной электроники»; Учебное пособие для СПО, училищ; М. «Высшая школа»; 1975, 432 с. с ил.
  3. А.С. Касаткин «Основы электротехники»; Учебное пособие для СПО, училищ; М. «Высшая школа»; 1986, 287 с.; ил.
  4. В.Е. Китаев «Электротехника с основами промышленной электроники»; Учебное пособие для СПО, училищ; М. «Высшая школа»; 1980, 254 с.; ил.
  5. И.А. Данилов «Общая электротехника»; Программированное учебное пособие для неэлектротехнических специальностей техникумов. М., «Высшая школа»; 1977, 416 с., с ил.
  6. А.В. Грищенко, В.В.Стрекопытов «Электрические машины и преобразователи подвижного состава»; Учебное пособие для студентов СПО. М., Издательский центр «Академия», 2005. – 320 с.
  7. П.Н. Новиков, В.Я. Кауфман «Задачник по электротехнике с основами промышленной электроники»; Учебное пособие для СПО. М., «Высшая школа»; 1985. – 232 с., с ил.

К работе прилагаются рисунки.

Области применения синхронных машин

Устройство синхронных машин

Синхронной машиной называется двухобмоточная электрическая машина переменного тока, одна из обмоток которой присоединена к электрической сети с постоянной частотой, а вторая — возбуждается постоянным током.

У синхронных машин частота вращения магнитного поля равна (синхронна) частоте вращения ротора ( ).

Синхронная машина имеет неподвижную часть — статор и подвижную — ротор.

Существует прямое (основное) и обращенное исполнение синхронной машины. Прямое исполнение — обмотка возбуждения расположена на роторе, а рабочая обмотка переменного тока — на статоре. Обращенное исполнение — обмотка возбуждения расположена на статоре, а рабочая обмотка – на роторе.

Обмотка переменного тока называется якорной обмоткой, а часть машины, несущая якорную обмотку, называется якорем; часть машины, несущая обмотку возбуждения,— индуктором.

Обращенное исполнение применяется для машины небольшой мощности (2-5 кВт).

Для более крупных машин применяется основное исполнение. В этом случае с помощью скользящего контакта подводится только мощность возбуждения, составляющая 0,3—2 % мощности машины, а не полная мощность, как в обращенном исполнении.

В дальнейшем будем рассматривать прямое исполнение.

Статор машин прямого исполнения включает в себя корпус, выполненный из чугуна или алюминиевого сплава. В корпус запрессован сердечник, выполненный из пластин электротехнической стали. При наружном диаметре более 1 м сердечник собирается из сегментов. В сердечнике выштампованы пазы. В пазах статора размещается многофазная (обычно трехфазная) 2р-полюсная обмотка. Фазы обмотки соединяются обычно в звезду.

На роторе, вал которого опирается на подшипники, располагается обмотка возбуждения. Она имеет такое же число полюсов, как и обмотка статора. Обмотка возбуждения питается постоянным током через два контактных кольца и щетки от постороннего источника – системы возбуждения.

Процессы в синхронной машине при холостом ходе

При холостом ходе ток в обмотке якоря равен нулю. Обмотка возбуждения с током If образует магнитное поле возбуждения, МДС которого равна:

Вследствие нелинейности магнитной характеристики возникают высшие гармоники МДС поля возбуждения. Поэтому принимаются меры по улучшению формы поля возбуждения, чтобы уменьшить содержание высших гармонических, поскольку высшие гармонические, не принимая участия в процессе преобразования энергии, вызывают добавочные потери. Улучшение формы поля возбуждения в явнополюсных машинах достигается выбором благоприятного соотношения между максимальным и минимальным зазором под полюсом, в неявнополюсных — выбором благоприятной относительной длины обмотанной части полюсного деления.

При воздействии поля возбуждения обмотке якоря индуктируется ЭДС Ef , которая содержит высшие гармоники. Искажение синусоидальности приводит к появлению добавочных потерь от высших гармонических. Поэтому ЭДС синхронных генераторов должны быть как можно ближе к синусоидальным.

Уменьшение содержания высших гармонических в кривой ЭДС достигается за счет укорочения шага обмотки якоря, размещения ее катушек в достаточно большом числе пазов, а также соединения фаз обмотки в звезду или треугольник.

В возбужденной машине при холостом ходе возникают механические потери на трение вращающихся частей Pмех, магнитные потери в стали магнитопровода якоря Pст и некоторые добавочные электромагнитные потери Pд.х. Двигатель, приводящий синхронную машину во вращение, должен развивать мощность, равную сумме этих потерь

и составляющую 0,3—3 % полной мощности машины.

Синхронный компенсатор

Синхронный компенсатор представляет собой синхронный двигатель, работающий без нагрузки на валу; при этом по обмотке якоря проходит практически только реактивный ток. Синхронный компенсатор может работать в режиме улучшения cosφ или в режиме стабилизации напряжения.

Нагрузка сети носит активно-индуктивный характер – ток нагрузки Iн отстает по фазе от напряжения сети Uc. Для улучшения cosφ сети синхронный компенсатор работает в режиме перевозбуждения. Ток возбуждения регулируется так, чтобы ток якоря I1 синхронного компенсатора опережал на 90° напряжение сети Uc (рис. а) и был примерно равен реактивной составляющей тока нагрузки Iн р. В результате сеть загружается только активным током нагрузки Iн а.

В отличие от батарей конденсаторов компенсатор может компенсировать как индуктивную (при перевозбуждении) так и емкостную (при недовозбуждении) составляющие тока.

В режиме стабилизации напряжения устанавливается ток возбуждения синхронного компенсатора чтобы ЭДС компенсатора Еf равнялась номинальному напряжению сети Ucн (рис. б). В сети имеется ток Iн, создающий падение напряжения ΔU= IнRccosφ + IнXc sinφ, где Rc и Хс — активное и индуктивное сопротивление сети; φ — угол сдвига фаз между векторами напряжения и тока сети.

Если напряжение сети понижается из-за возрастания тока нагрузки и становится меньше Ucн, то синхронный компенсатор забирает из сети реактивный опережающий ток I1 (рис. в). Это уменьшает падение напряжения на величину ΔUк= I1Xc. При повышении напряжения в сети, когда Uc > Ucн, синхронный компенсатор загружает сеть реактивным отстающим током I1 (рис. г), что приводит к увеличению падения напряжения на величину
ΔUк= I1Xc. Недостаток метода – синхронный компенсатор загружает линию реактивным током, увеличивая потери в ней.

Синхронные компенсаторы выпускаются мощностью от 10 до
100 МВА и по конструкции имеют следующие отличия от синхронного двигателя:

– не имеют выходного конца вала;

– вал не передает вращающий момент и выполняется менее массивным;

– уменьшен воздушный зазор и размеры обмотки возбуждения;

– имеет более массивную магнитную систему для получения большого значения МДС;

-имеет явнополюсную конструкцию при числе полюсов 6 или 8.

Синхронный компенсатор должен быть оснащен автоматическим регулятором возбуждения, который при изменении режима напряжения в узле так регулирует его ток возбуждения, чтобы напряжение на зажимах компенсатора оставалось постоянным.

Энергетика синхронных машин

Часть мощности, потребляемой синхронной машиной, идет на компенсацию потерь, которые включают в себя:

1. Потери на возбуждение ΔРв..

2. Механические потери ΔРмех — это потери на трение в подшипниках и потери на вентиляцию. Они зависят от частоты вращения.

3. Магнитные потери ΔРст в основном имеют место в сердечнике статора, который подвергается перемагничиванию полем ротора. Они состоят из потерь на вихревые токи и перемагничивание. Потери в стали зависят от значения магнитной индукции, марки и толщины листов стали из которой набран сердечник якоря и частоты перемагничивания.

4. Электрические потери имеют место в обмотках статора

5. Добавочные потери ΔРдоп учитывают потери на пульсацию магнитного потока, потери, вызванные поверхностным эффектом и др. Они равны 0,25 – 0,5% полезной мощности генератора

Механические и магнитные не зависят от нагрузки. Их называют постоянными. Электрические потери зависят от нагрузки машины, поэтому эти потери называются переменными.

Читайте также:  Ремонт маленькой ванной комнаты

На рисунке приведены энергетические диаграммы синхронных генераторов и двигателей при возбуждении от возбудителя (рис. а), а также от сети переменного тока (рис. а).

К генераторам подводится механическая мощность Р1= Мврω1, за счет которой покрываются потери холостого хода, состоящие из механических потерь ΔРмех, потерь в стали ΔРст и добавочных потерь ΔРдоп. Если возбудитель приводится от вала генератора, то потери в возбудителе и в цепи возбуждения ΔРв также покрываются за счет механической мощности. Остаток — электромагнитная мощность Рэм= Мэмω1 передается магнитным полем индуктора якорю и преобразуется в его обмотке в электрическую мощность. Часть этой мощности идет на потери в обмотке якоря ΔРэ, а остальная мощность передается на зажимы генератора и является полезной мощностью
Р2 =mU1I1 cosφ1 (рис. а). Если генератор выполнен с самовозбуждением, то с его зажимов снимается мощность ΔРв, часть которой идет на потери в цепи возбуждения (рис. б), а остаток — полезная мощность Р2 отдается в сеть.

Коэффициент полезного действия:

У двигателей потребляемая мощность Р1 =mU1I1 cosφ1 поступает из электрической сети. За ее счет покрываются электрические потери ΔРэ в обмотке якоря и мощность возбуждения ΔРв при возбуждении от сети переменного тока. Оставшаяся часть преобразуется в электромагнитную мощность Рэм= Мэмω1, связанную с вращающимся магнитным полем. За счет этого поля покрываются потери в стали ΔРст и добавочные потери ΔРдоп, а остальное передается ротору в виде механической мощности Рмех. Механическая мощность должна покрыть механические потери ΔРмех и мощность ΔРв, потребляемую возбудителем. Оставшаяся часть механической мощности — мощность на валу является полезной мощностью двигателя Р2= Мврω1.

Энергетические диаграммы показывают, что преобразование энергии в синхронной машине более сложно, чем это описывалось простейшими формулами и векторными диаграммами. Подключения синхронного двигателя к сети и синхронизации еще недостаточно, чтобы машина создала вращающий момент на валу – сначала должны быть покрыты потери в обмотке якоря и в стали. Если к валу генератора, синхронизированного с сетью, подведена механическая мощность, то это еще не значит, что эта машина стала отдавать в сеть электрическую мощность – генератор сначала должен покрыть потери в своей обмотке якоря.

Учет всех факторов, включая потери в стали, существенно усложняет и векторные диаграммы, и расчетные формулы. Поэтому в инженерных расчетах обычно пользуются упрощенной теорией синхронной машины, лишь по мере необходимости вводя дополнительные факторы, уточняющие и одновременно усложняющие эту теорию.

Качания синхронных машин

Допустим, что машина работает при некоторой нагрузке и развивает электромагнитный момент M1 =Mвн1, соответствующий углу Θ1 (рис. 6.59, а и б). Если резко увеличить внешний момент до величины Mвн2, то нагрузочный угол будет увеличиваться до величины Θ2, соответствующей новому значению электромагнитного момента M2 =Mвн2. Однако из-за инерции ротора нагрузочный угол, увеличиваясь, достигает значения Θ3 > Θ2, а затем под действием синхронизирующего момента начинает уменьшаться до величины Θ4 4 при f=50Гц) применяется явнополюсноеисполнение (явно выраженные полюсы). При n=≥1500 об/мин (2р≤4) применяется неявнополюсное исполнение (неявно выраженные полюсы).

Рис. 6.3 Конструкция роторов синхронных машин; а – явнополюсная; б – неявнополюсная; обмотки: 1 – возбуждения; 2 — демпферная

Сердечник явнополюсного ротора состоит из полюсов и обода, к которому они крепятся. Полюсы собираются из штампованных листов электротехнической стали толщиной 1—2 мм, которые стягиваются коваными или литыми нажимными щеками. В отдельных случаях применяются массивные литые полюсы. Полюсы крепятся к ободу с помощью болтов (машины малой и средней мощности с массивным ободом), или полюсных хвостов Т-образной или иной формы. На каждом полюсе устанавливается катушка обмотки возбуждения. Обод ротора выполняется массивным (сварным, литым) или шихтованным из штампованных листов электротехнической стали толщиной 1,5—6 мм. Листы стягиваются шпильками. При наружном диаметре до 2— 4 м обод изготовляется из сплошных листов и насаживается непосредственно на вал. При большом диаметре обод собирается из отдельных сегментов, которые крепятся на сварном остове. Для машин, имеющих значительную осевую длину, в ободе имеются каналы для прохождения охлаждающего воздуха к периферийным зонам ротора. Для крепления обмотки возбуждения полюсные наконечники имеют выступы. Для этих же целей используются межполюсные распорки. Для обеспечения более устойчивой работы в переходных режимах на роторе устанавливается демпферная обмотка. Она расположена в наконечниках полюсов и по своей конструкции аналогична короткозамкнутой обмотке ротора в асинхронном двигателе.

Сердечник неявнополюсного ротора изготовляется как единое целое с хвостовиками (концами вала) из одной поковки из углеродистой стали (диаметром до 800 мм) или легированной стали (диаметром свыше 800 мм). Обмотка возбуждения распределяется по нескольким пазам ротора. Для защиты лобовых частей обмотки возбуждения от центробежных сил применяют бандажные кольца, изготовляемые для крупных турбогенераторов из немагнитной стали (или титана). Бандажное кольцо жестко сопрягается с сердечником или хвостовиком. Обмотка в пазах ротора удерживается немагнитными дюралевыми клиньями. Роль демпферной обмотки в неявнополюсных машинах играют массив ротора и проводящие клинья.

Все промышленные синхронные машины выполняются на стандартизованную частоту 50 Гц.

В зависимости от мощности и частоты вращения номинальное напряжение обмотки якоря (статора) синхронных машин выбирается из числа стандартных напряжений: 0,23; 0,4; 3,15; 6,3; 10,5; 13,8; 15,75 кВ (для генераторов) и 0,22; 0,38; 3; 6; 10 кВ (для двигателей).

В крупных турбогенераторах и гидрогенераторах номинальное напряжение обмотки якоря иногда принимают нестандартным — от 18 до 24 кВ. Номинальное напряжение обмотки возбуждения выбирается в пределах от 24 до 400 В.

С ростом мощности и частоты вращения КПД машины увеличивается. При мощности 100—4000 кВА он составляет 0,9—0,95; в гидрогенераторах и турбогенераторах большой мощности он достигает 0,97—0,99.

Последнее изменение этой страницы: 2016-08-26; Нарушение авторского права страницы

Синхронные машины – двигатели, генераторы и компенсаторы

Синхронная машина может работать генератором или двигателем. Синхронная машина может работать в качестве двигателя, если подвести к обмотке ее статора трехфазный ток из сети. В этом случае в результате взаимодействия магнитных полей статора и ротора поле статора увлекает за собой ротор. При этом ротор вращается в ту же сторону и с такой же скоростью, как и поле статора.

Наибольшее распространение получил генераторный режим работы синхронных машин, и почти вся электроэнергия вырабатывается синхронными генераторами. Синхронные двигатели применяются при мощности более 600 кВт и до 1 кВт как микродвигатели. Синхронные генераторы на напряжение до 1000 В применяются в агрегатах для автономных систем электроснабжения.

Агрегаты с этими генераторами могут быть стационарными и передвижными. Большинство агрегатов применяются с дизельными двигателями, но приводом их могут быть газовые турбины, электродвигатели и бензиновые двигатели.

Синхронный двигатель отличается от синхронного генератора лишь пусковой успокоительной обмоткой, которая должна обеспечивать хорошие пусковые свойства двигателя.

Схема шестиполюсного синхронного генератора. Показаны сечения обмоток одной фазы (три обмотки, соединенные последовательно). В показанные на рисунке свободные пазы укладываются обмотки двух других фаз. Фазы соединяются в звезду или треугольник.

Режим генератора: двигатель (турбина) вращает ротор, на обмотку которого подается постоянное напряжение ? возникает ток, который создает постоянное магнитное поле. Магнитное поле вращается вместе с ротором, пересекает статорные обмотки и наводит в них одинаковые по модулю и частоте ЭДС, но сдвинутые на 1200 (симметричная трехфазная система).

Режим двигателя: обмотку статора подключают к трёхфазной сети, а обмотку ротора к источнику постоянного тока. В результате взаимодействия вращающегося магнитного поля машины с постоянным током обмотки возбуждения, возникает вращающий момент Мвр, который приводит ротор во вращение со скоростью магнитного поля.

Механическая характеристика синхронного двигателя – зависимость n(M)– представляет собой горизонтальный отрезок прямой.

Применение синхронных двигателей

Синхронные двигатели имеют по сравнению с асинхронными большое преимущество, заключающееся в том, что благодаря возбуждению постоянным током они могут работать с cosфи = 1 и не потребляют при этом реактивной мощности из сети, а при работе, с перевозбуждением даже отдают реактивную мощность в сеть. В результате улучшается коэффициент мощности сети и уменьшаются падение напряжения и потери в ней, а также повышается коэффициент мощности генераторов, работающих на электростанциях.

Максимальный момент синхронного двигателя пропорционален U, а у асинхронного двигателя U 2 .

Поэтому при понижении напряжения синхронный двигатель сохраняет большую нагрузочную способность. Кроме того, использование возможности увеличения тока возбуждения синхронных двигателей позволяет увеличивать их надежность работы при аварийных понижениях напряжения в сети и улучшать в этих случаях условия работы энергосистемы в целом. Вследствие большей величины воздушного зазора добавочные потери в стали и в клетке ротора синхронных двигателей меньше, чем у асинхронных, благодаря чему к. п. д. синхронных двигателей обычно выше.

С другой стороны, конструкция синхронных двигателей сложнее, чем короткозамкнутых асинхронных двигателей, и, кроме того, синхронные двигатели должны иметь возбудитель или иное устройство для питания обмотки возбуждения постоянным током. Вследствие этого синхронные двигатели в большинстве случаев дороже асинхронных двигателей с короткозамкнутым ротором.

При эксплуатации синхронных двигателей возникли существенные трудности с их пуском. В настоящее время эти трудности преодолены.

Пуск и регулирование скорости вращения синхронных двигателей также сложнее. Тем не менее, преимущество синхронных двигателей настолько велико, что при больших мощностях их целесообразно применять всюду, где не требуется частых пусков и остановок и регулирования скорости вращения (двигатель-генераторы, мощные насосы, вентиляторы, компрессоры, мельницы, дробилки и пр.).

Синхронные компенсаторы предназначаются для компенсации коэффициента мощности сети и поддержания нормального уровня напряжения сети в районах сосредоточения потребительских нагрузок. Нормальным являемся перевозбужденный режим работы синхронного компенсатора, когда он отдает в сеть реактивную мощность.

В связи с этим компенсаторы, как и служащие для этих же целей батареи конденсаторов, устанавливаемые на потребительских подстанциях, называют также генераторами реактивной мощности. Однако в периоды спада потребительских нагрузок (например, ночью) нередко возникает необходимость работы синхронных компенсаторов также в недовозбужденном режиме, когда они потребляют из сети индуктивный ток и реактивную мощность, так как в этих случаях напряжение сети стремится возрасти и для поддержания его на нормальном уровне необходимо загрузить сеть индуктивными токами, вызывающими в ней дополнительные падения напряжения.

Для этого каждый синхронный компенсатор снабжается автоматическим регулятором возбуждения или напряжения, который регулирует величину его тока возбуждения так, что напряжение на зажимах компенсатора остается постоянным.

Принцип работы синхронного генератора

Электрогенератор (альтернатор) электротока переменного типа предназначается для процедуры преобразования кинетической и потенциальной энергии в электроэнергию. Ротор такой машины приводится в движение, а именно вращается, от двигателя первичного типа, в роли которого могут выступать ДВС (топливные двигатели), электродвигатели, турбины.

Если альтернатор переменного тока характеризуется тем, что частота вращения его ротора совпадает с частотой вращения магнитного поля, то такие машины называются синхронными. Произвести расчет частоты вращения можно по формуле:

  • f – частота тока в электросети;
  • p – количество пар статорных полюсов.

Часто многие неосведомленные в области электроустановок люди задаются вопросом о том, какой принцип работы синхронного генератора.

Принцип работы СГ

Конструкция генерирующей машины переменного тока достаточна проста. Статор и ротор – это основные компоненты синхронного генератора (СГ).

Синхронный альтернатор, в основном, вырабатывает электроэнергию тогда, когда ротор синхронного генератора движется по кругу вместе с магнитным полем, линии которого встречаются в неподвижной обмотке статора. Поле образуется посредством возбуждения дополнительным устройством, например:

  • вспомогательным генератором;
  • аккумулятором;
  • разнообразными энергетическими преобразователями;
  • и другими энергоисточниками.

Стоит отметить, что процесс преобразования энергий в СГ может происходить и по-другому – вращающееся части проводникового элемента могут располагаться в обездвиженном магнитном поле. В этом случае возникает трудность токосъема через щеточно-коллекторный узел электрической машины, какой соединяет ротор с цепями ее неподвижной части. Для генераторных машин невысокой мощности подобная схема может успешно применяться. Зачастую она встречается в установках передвижного типа.

В рассматриваемом генераторе продуцируется электродвижущая сила (ЭДС), расчет которой совершается по формуле:

  • π – константа;
  • B – индукция магнитного поля;
  • l – длина паза статорного элемента;
  • w – число витков в обмотке статорного компонента;
  • Dn – диаметр статора внутри.

Электроэнергетика с такими устройствами построена, в основном, на электронапряжении в диапазоне 15 000-40 000 В. Энергообмен через коллектор альтернатора затруднителен. К тому же обмоточная катушка подвижного типа подвергается ударным нагрузкам большой силы и вращательным движениям с попеременной скоростью, что формирует проблематику с изоляционной составляющей. По этой причине якорные элементы производят обездвиженными, так как именно через них пропускается основная масса энергии.

Мощность устройства-возбудителя обычно не превосходит 4-5% от совокупной производительной мощности синхронного генератора – это дает возможность пропускать электроток через динамический узел.

Для информации. В механизмах переменного тока малой мощности (до нескольких кВт) роторный элемент изготавливается с магнитными деталями постоянного типа (ферритовыми, неодимовыми, полимерными магнитопластами и другими). В них не нужно устанавливать подвижные контакты, однако из-за этого существуют трудности с регулировкой выходного напряжения.

Устройство СГ

Статор СГ имеет почти такое же устройство и принцип функционирования, как и у асинхронного варианта. Его железные компоненты компилируются из стальных пластин (сталь применяется электротехнического назначения), которые отделаются друг от друга слоями изоляции. Обмотка переменного электротока располагается в его пазах. Провода обмоток отделяются друг от друга изолирующим слоем и закрепляются надежно, так как через них вводится нагрузка. Ротор может исполняться без выпирающих полюсов либо с ярко выраженными полюсами.

На заметку. Наибольшую популярность имеет трехфазный синхронный генератор, применяемый во многих областях жизнедеятельности человека и предприятий. Однофазные варианты обычно применяется в быту.

Синхронные генераторы с явно полюсным ротором производятся для тихоходных машин, к примеру, для установок с гидротурбинами. А СГ с не явно полюсными роторами подходят для механизмов переменного тока, вращающихся с высокой скоростью.

Читайте также:  Самый прогрессивный строительный материал

Синхронные генерирующие устройства могут работать в двух режимах: двигательном либо генерирующем переменный электроток. Здесь важно то, какой метод охлаждения применяется, так как генерация чего-либо всегда более требовательна. В основном, на вал монтируются крыльчатки, какие охлаждают ротор с двух сторон воздухом, проходящем через фильтрующий элемент. Потоки воздуха в такой системе охлаждения вращаются одни и те же. При работе СГ в усиленном режиме подобная система нежелательна.

Важно! Эффективнее при высоких нагрузках применять в качестве охлаждающего агента водород, какой более чем в 14 раз легче воздуха.

Обмотки рассматриваемого генератора отводятся концами на его распредкоробку. Трёхфазная машина имеет иное соединение обмотки – отвод совершается звездой или треугольником.

Преимущественно все синхронные генерирующие устройства поддерживают синусоидальное переменное электронапряжение. Этого можно достичь посредством изменения формы наконечников на полюсах и особым месторасположением витков в пазах не явно полюсного ротора.

Реакция якоря

В обмотках статорного элемента при присоединении выхода с наружной нагрузкой начинает протекать электроток. Образующееся при этом силовое магнитное поле совмещается с полем, что формируется роторным элементом. Такое взаимодействие полей именуется реакцией якоря.

При активной нагрузке электроток и ЭДС имеют одни и те же фазы. Предельная сила электротока проявляется в тот момент, когда полюса роторного элемента находятся на противоположной стороне от якорных обмоток. Главный магнитный поток и второстепенный поток, который формируется во время реакции якоря, перпендикулярны друг другу, а при сопоставлении формируют увеличенный итоговый поток, что увеличивает в тот момент ЭДС.

Нагрузка индуктивного вида, имея потоки, направленные навстречу друг к другу, наоборот, приводит к значительному снижению электродвижущей силы.

Нагрузка емкостного типа вызывает совмещение потоков, движущихся в одну сторону, итог – увеличение ЭДС.

Любое повышение нагрузки увеличивает влияние реакции якоря на выходное электронапряжение, которое из-за этого изменяется в ту или иную сторону, что крайне нежелательно в электросетях. Практично такой процесс можно контролировать: просто изменять возбудитель, что снизит уровень влияния реакции якоря на главное силовое поле.

Режимы работы СГ

Нормальный режим работы СГ можно охарактеризовать любым числом рабочих периодов, какой угодно длительности, при которых главные параметры не выходят за диапазон допустимых значений. При таком режиме работы допустимы отклонения электронапряжения на выходе и частоты в пределах 4-5% и 2,5% от номинального значения, коэффициентов мощности и тому подобные. Допуски на отклонения задаются нормативными документами и определяются нагревом машин либо же гарантируются фирмой-производителем.

Нормальные рабочие режимы недопустимы для долгого функционирования устройства при таких обстоятельствах, как перевозбуждение или недовозбуждение, переход в режимы асинхронного типа, перегрузки. На возникновение таких обстоятельств влияют следующие отклонения в электросети:

  • неравномерность фазной загрузки;
  • короткое замыкание;
  • нагрузки попеременного действия.

Стоит отметить, что на нормальное функционирование механизма воздействует подключенная к нему электросеть, в которой любые нарушения работоспособности отдельно взятых источников потребления вызывают искажение формы и несимметрию электросигнала.

Важно! Длительная работа генерирующего энергию устройства допустима при разнице токов на фазах турбогенератора до 10% и водяных генераторов, синхронных компенсирующих машин до 15-20%.

Искривление синусоиды на СГ может случаться из-за высокомощных преобразователей, выпрямляющих устройств и прочих.

Необходимо учесть, что нормальное функционирование синхронных устройств возможно только при качественной работе охлаждающей системы. Так, при затратах охлаждающего агента в объеме более 70% от номинального значения, должна срабатывать предупреждающая сигнализация о том, что устройство нужно отключить от сети, в противном случае может произойти выход оборудования из строя. Когда расход охлаждающего агента уменьшается на 50%, то устройство должно разгрузиться порядка двух минут, после чего отключиться за максимум четыре минуты.

Характерные черты СГ

СГ обладают нижеследующими характерными чертами:

  • при нулевой нагрузке (холостом ходе), когда якорная обмотка находится в не замкнутом виде, задается зависимость электродвижущей силы от электротоков возбуждения, а также устанавливается значение уровня намагничивания сердечников генератора;
  • выходное электронапряжение зависит от нагрузочных электротоков – этот признак является внешней характеристикой СГ;
  • регулировочные характеристики синхронной машины проявляются в зависимости возбуждающих электротоков от нагрузочных аналогов при поддерживании установленных параметров на выходе в автоматическом режиме.

Синхронные генераторы нашли широкое применение в промышленности и энергообеспечении, так как имеют простую конструкцию, понятный принцип работы и могут выдерживать кратковременные перегрузки.

Для правильной эксплуатации и проведения ремонтных работ над СГ переменного тока необходимо знать их принцип работы (одинаковое по частоте вращение ротора и магнитного поля) и устройство. Эти знания пригодятся инженерам производственных предприятий и специалистам в области энергетики, а также обычным людям, которые используют подобную технику в бытовых целях.

Видео

Генераторы переменного тока

Генератор – устройство, преобразующее один вид энергии в другой.
В данном случае рассматриваем преобразование механической энергии вращения в электрическую.

Различают два типа таких генераторов. Синхронные и асинхронные.

Синхронный генератор. Принцип действия

Отличительным признаком синхронного генератора является жёсткая связь между частотой f переменной ЭДС, наведённой в обмотке статора, и частотой вращения ротора n , называемой синхронной частотой вращения:

где p – число пар полюсов обмотки статора и ротора.
Обычно частота вращения выражается в об/мин, а частота ЭДС в Герцах (1/сек), тогда для количества оборотов в минуту формула примет вид:

На рис. 1.1 представлена функциональная схема синхронного генератора. На статоре 1 расположена трёхфазная обмотка, принципиально не отличающаяся от аналогичной обмотки асинхронной машины. На роторе расположен электромагнит с обмоткой возбуждения 2, получающей питание постоянным током, как правило, через скользящие контакты, осуществляемые посредством двух контактных колец, расположенных на роторе, и двух неподвижных щёток.
В некоторых случаях в конструкции ротора синхронного генератора вместо электромагнитов могут использоваться постоянные магниты, тогда необходимость в наличии контактов на валу отпадает, но существенно ограничиваются возможности стабилизации выходных напряжений.

Приводным двигателем (ПД), в качестве которого используется турбина, двигатель внутреннего сгорания либо другой источник механической энергии, ротор генератора приводится во вращение с синхронной скоростью. При этом магнитное поле электромагнита ротора также вращается с синхронной скоростью и индуцирует в трёхфазной обмотке статора переменные ЭДС EA , EB и EC , которые будучи одинаковыми по значению и сдвинутыми по фазе относительно друг друга на 1/3 периода (120°), образуют симметричную трёхфазную систему ЭДС.

C подключением нагрузки к зажимам обмотки статора С1, С2 и С3 в фазах обмотки статора появляются токи IA, IB, IC , которые создают вращающееся магнитное поле. Частота вращения этого поля равна частоте вращения ротора генератора. Таким образом, в синхронном генераторе магнитное поле статора и ротор вращаются синхронно. Мгновенное значение ЭДС обмотки статора в рассматриваемом синхронном генераторе

e = 2Blwv = 2πBlwDn

Здесь: B – магнитная индукция в воздушном зазоре между сердечником статора и полюсами ротора, Тл;
l – активная длина одной пазовой стороны обмотки статора, т.е. длина сердечника статора, м;
w – количество витков;
v = πDn – линейная скорость движения полюсов ротора относительно статора, м/с;
D – внутренний диаметр сердечника статора, м.

Формула ЭДС показывает, что при неизменной частоте вращения ротора n форма графика переменной ЭДС обмотки якоря (ста- тора) определяется исключительно законом распределения магнитной индукции B в зазоре между статором и полюсами ротора. Если график магнитной индукции в зазоре представляет собой синусоиду B = Bmax sinα , то ЭДС генератора также будет синусоидальной. В синхронных машинах всегда стремятся получить распределение индукции в зазоре как можно ближе к синусоидальному.

Так, если воздушный зазор δ постоянен (рис. 1.2), то магнитная индукция B в воздушном зазоре распределяется по трапецеидальному закону (график 1). Если же края полюсов ротора «скосить» так, чтобы зазор на краях полюсных наконечников был равен δmax (как это показано на рис. 1.2), то график распределения магнитной индукции в зазоре приблизится к синусоиде (график 2), а, следовательно, и график ЭДС, индуцированной в обмотке генератора, приблизится к синусоиде. Частота ЭДС синхронного генератора f (Гц) пропорциональна синхронной частоте вращения ротора n (об/с)

где p – число пар полюсов.
В рассматриваемом генераторе (см. рис.1.1) два полюса, т.е. p = 1.
Для получения ЭДС промышленной частоты (50 Гц) в таком генераторе ротор необходимо вращать с частотой n = 50 об/с (n = 3000 об/мин).

Способы возбуждения синхронных генераторов

Самым распространенным способом создания основного магнитного потока синхронных генераторов является электромагнитное возбуждение, состоящее в том, что на полюсах ротора располагают обмотку возбуждения, при прохождении по которой постоянного тока, возникает МДС, создающая в генераторе магнитное поле. До последнего времени для питания обмотки возбуждения применялись преимущественно специальные генераторы постоянного тока независимого возбуждения, называемые возбудителями В (рис. 1.3, а). Обмотка возбуждения (ОВ) получает питание от другого генератора (параллельного возбуждения), называемого подвозбудителем (ПВ). Ротор синхронного генератора, возбудителя и подвозбудителя располагаются на общем валу и вращаются одновременно. При этом ток в обмотку возбуждения синхронного генератора поступает через контактные кольца и щётки. Для регулирования тока возбуждения применяют регулировочные реостаты, включаемые в цепи возбуждения возбудителя r1 и подвозбудителя r2 . В синхронных генераторах средней и большой мощности процесс регулирования тока возбуждения автоматизируют.

В синхронных генераторах получила применение также бесконтактная система электромагнитного возбуждения, при которой синхронный генератор не имеет контактных колец на роторе. В качестве возбудителя в этом случае применяют обращенный синхронный генератор переменного тока В (рис. 1.3, б). Трехфазная обмотка 2 возбудителя, в которой наводится переменная ЭДС, расположена на роторе и вращается вместе с обмоткой возбуждения синхронного генератора и их электрическое соединение осуществляется через вращающийся выпрямитель 3 непосредственно, без контактных колец и щёток. Питание постоянным током обмотки возбуждения 1 возбудителя В осуществляется от подвозбудителя ПВ – генератора постоянного тока. Отсутствие скользящих контактов в цепи возбуждения синхронного генератора позволяет повысить её эксплуатационную надёжность и увеличить КПД.

В синхронных генераторах, в этом числе гидрогенераторах, получил распространение принцип самовозбуждения (рис. 1.4, а), когда энергия переменного тока, необходимая для возбуждения, отбирается от обмотки статора синхронного генератора и через понижающий трансформатор и выпрямительный полупроводниковый преобразователь ПП преобразуется в энергию постоянного тока. Принцип самовозбуждения основан на том, что первоначальное возбуждение генератора происходит за счёт остаточного магнетизма машины.

На рис. 1.4, б представлена структурная схема автоматической системы самовозбуждения синхронного генератора (СГ) с выпрямительным трансформатором (ВТ) и тиристорным преобразователем (ТП), через которые электроэнергия переменного тока из цепи статора СГ после преобразования в постоянный ток подаётся в обмотку возбуждения. Управление тиристорным преобразователем осуществляется посредством автоматического регулятора возбуждения АРВ, на вход которого поступают сигналы напряжения на входе СГ (через трансформатор напряжения ТН) и тока нагрузки СГ (от трансформатора тока ТТ). Схема содержит блок защиты (БЗ), обеспечивающий защиту обмотки возбуждения (ОВ) от перенапряжения и токовой перегрузки.

Мощность, затрачиваемая на возбуждение, обычно составляет от 0,2 до 5 % полезной мощности (меньшее значение относится к генераторам большой мощности).
В генераторах малой мощности находит применение принцип возбуждения постоянными магнитами, расположенными на роторе машины. Такой способ возбуждения даёт возможность избавить генератор от обмотки возбуждения. В результате конструкция генератора существенно упрощается, становится более экономичной и надёжной. Однако, из-за высокой стоимости материалов для изготовления постоянных магнитов с большим запасом магнитной энергии и сложности их обработки применение возбуждения постоянными магнитами ограничено машинами мощностью не более нескольких киловатт.

Синхронные генераторы составляют основу электроэнергетики, так как практически вся электроэнергия во всём мире вырабатывается посредством синхронных турбо- или гидрогенераторов.
Так же синхронные генераторы находят широкое применение в составе стационарных и передвижных электроустановок или станций в комплекте с дизельными и бензиновыми двигателями.

Асинхронный генератор. Отличия от синхронного

Асинхронные генераторы принципиально отличаются от синхронных отсутствием жесткой зависимости между частотой вращения ротора и вырабатываемой ЭДС. Разницу между этими частотами характеризует коэффициент s – скольжение.

здесь:
n – частота вращения магнитного поля (частота ЭДС).
n r – частота вращения ротора.

Более подробно с расчётом скольжения и частоты можно ознакомиться в статье: асинхронные генераторы. Частота.

В обычном режиме электромагнитное поле асинхронного генератора под нагрузкой оказывает тормозной момент на вращения ротора, следовательно, частота изменения магнитного поля меньше, поэтому скольжение будет отрицательным. К генераторам, работающим в области положительных скольжений, можно отнести асинхронные тахогенераторы и преобразователи частоты.

Асинхронные генераторы в зависимости от конкретных условий применения выполняются с короткозамкнутым, фазным или полым ротором. Источниками формирования необходимой энергии возбуждения ротора могут являться статические конденсаторы или вентильные преобразователи с искусственной коммутацией вентилей.

Асинхронные генераторы можно классифицировать по способу возбуждения, характеру выходной частоты (изменяющаяся, постоянная), способу стабилизации напряжения, рабочим областям скольжения, конструктивному выполнению и числу фаз.
Последние два признака характеризуют конструктивные особенности генераторов.
Характер выходной частоты и методы стабилизации напряжения в значительной степени обусловлены способом образования магнитного потока.
Классификация по способу возбуждения является основной.

Можно рассмотреть генераторы с самовозбуждением и с независимым возбуждением.

Самовозбуждение в асинхронных генераторах может быть организовано:
а) с помощью конденсаторов, включенных в цепь статора или ротора или одновременно в первичную и вторичную цепи;
б) посредством вентильных преобразователей с естественной и искусственной коммутацией вентилей.

Независимое возбуждение может осуществляться от внешнего источника переменного напряжения.

По характеру частоты самовозбуждающиеся генераторы разделяются на две группы. К первой из них относятся источники практически постоянной (или постоянной) частоты, ко второй переменной (регулируемой) частоты. Последние применяются для питания асинхронных двигателей с плавным изменением частоты вращения.

Более подробно рассмотреть принцип работы и конструктивные особенности асинхронных генераторов планируется рассмотреть в отдельных публикациях.

Асинхронные генераторы не требуют в конструкции сложных узлов для организации возбуждения постоянным током или применения дорогостоящих материалов с большим запасом магнитной энергии, поэтому находят широкое применение у пользователей передвижных электроустановок по причине своей простоты и неприхотливости в обслуживании. Используются для питания устройств, не требующих жёсткой привязки к частоте тока.
Техническим достоинством асинхронных генераторов можно признать их устойчивость к перегрузкам и коротким замыканиям.
С некоторой информацией по мобильным генераторным установкам можно ознакомиться на странице:
Дизель-генераторы.
Асинхронный генератор. Характеристики.
Асинхронный генератор. Стабилизация.

Замечания и предложения принимаются и приветствуются!

Ссылка на основную публикацию