Солнечные батареи для дома: разновидности конструкций и монтаж

Виды солнечных батарей: сравнительный обзор конструкций и советы по выбору панелей

Альтернативная энергетика максимально развивается в Европе, показывая результатами свою перспективность. Появляются новые виды солнечных батарей, повышается их КПД.

При желании обеспечить работу промышленного здания или жилого помещения за счет энергии солнца, необходимо предварительно узнать об отличиях оборудования, понять, какие солнечные панели подходят под климатические условия определенного региона.

Мы поможем разобраться в этом вопросе. В статье рассмотрен принцип работы фотоэлектрических преобразователей, приведен обзор разных видов солнечных батарей с указанием их характеристик, преимуществ и недостатков. Ознакомившись с материалом, вы сможете сделать правильный выбор для обустройства эффективной гелиосистемы.

Принцип работы солнечных панелей

Подавляющее большинство солнечных панелей являются в физическом смысле фотоэлектрическими преобразователями. Электрогенерирующий эффект возникает в месте полупроводникового p-n перехода.

Панель состоит из двух кремниевых пластин с различными свойствами. Под действием света в одной из них возникает недостаток электронов, а в другой – их избыток. Каждая пластина имеет токоотводящие полоски из меди, которые подсоединяются к преобразователям напряжения.

Промышленная солнечная панель состоит из множества ламинированных фотоэлектрических ячеек, скрепленных между собой и закрепленных на гибкой или жесткой подложке.

КПД оборудования зависит во многом от чистоты кремния и ориентации его кристаллов. Именно эти параметры пытаются улучшить инженеры последние десятилетия. Основной проблемой при этом является высокая стоимость процессов, которые лежат в основе очищения кремния и расположения кристаллов в одном направлении на всей панели.

Полупроводники фотоэлектрических преобразователей могут изготавливаться не только из кремния, но и из других материалов – принцип работы батареи при этом не изменяется.

Типы фотоэлектрических преобразователей

Классифицируют промышленные солнечные панели по их конструкционным особенностям и типу рабочего фотоэлектрического слоя.

Различают такие виды батарей по типу устройства:

Гибкие тонкопленочные панели постепенно занимают всё большую нишу на рынке благодаря своей монтажной универсальности, ведь установить их можно на большинстве поверхностей с разнообразными архитектурными формами.

По типу рабочего фотоэлектрического слоя солнечные батареи разделяются на такие разновидности:

  1. Кремниевые: монокристаллические, поликристаллические, аморфные.
  2. Теллурий-кадмиевые.
  3. На основе селенида индия- меди-галлия.
  4. Полимерные.
  5. Органические.
  6. На основе арсенида галлия.
  7. Комбинированные и многослойные.

Интерес для широкого потребителя представляют не все типы солнечных панелей, а только лишь первые два кристаллических подвида.

Хотя некоторые другие типы панелей и имеют большие КПД, но из-за высокой стоимости они не получили широкого распространения.

Кремниевые фотоэлектрические элементы довольно чувствительны к нагреву. Базовая температура для измерения электрогенерации составляет 25°C. При её повышении на один градус эффективность панелей снижается на 0,45-0,5%.

Далее будут подробно рассмотрены солнечные панели, которые представляют наибольший потребительский интерес.

Характеристики панелей на основе кремния

Кремний для солнечных батарей изготавливают из кварцевого порошка – размолотых кристаллов кварца. Богатейшие залежи сырья есть в Западной Сибири и Среднем Урале, поэтому перспективы данного направления солнечной энергетики практически безграничны.

Даже сейчас кристаллические и аморфные кремниевые панели занимают уже более 80% рынка. Поэтому стоит рассмотреть их более подробно.

Монокристаллические кремниевые панели

Современные монокристаллические кремниевые пластины (mono-Si) имеют равномерный темно-синий цвет по всей поверхности. Для их производства используется наиболее чистый кремний. Монокристаллические фотоэлементы среди всех кремниевых пластин имеют самую высокую цену, но обеспечивают и наилучший КПД.

Высокая стоимость производства обусловлена сложностью ориентации всех кристаллов кремния в одном направлении. Из-за таких физических свойств рабочего слоя максимальный КПД обеспечивается только лишь при перпендикулярном падении солнечных лучей на поверхность пластины.

Монокристаллические батареи требуют дополнительного оборудования, которое автоматически поворачивает их в течение дня, чтобы плоскость панелей была максимально перпендикулярна солнечным лучам.

Слои кремния с односторонне ориентированными кристаллами вырезаются из цилиндрического бруска металла, поэтому готовые фотоэлектрические блоки имеют вид закруглённого по углам квадрата.

К преимуществам монокристаллических кремниевых батарей относят:

  1. Высокий КПД со значением 17-25%.
  2. Компактность – меньшая площадь размещения оборудования из расчета на единицу мощности, в сравнении с поликристаллическими кремниевыми панелями.
  3. Долговечность – достаточная эффективность генерации электроэнергии обеспечивается до 25 лет.

Недостатков у таких батарей всего два:

  1. Высокая стоимость и длительная окупаемость.
  2. Чувствительность к загрязнению. Пыль рассеивает свет, поэтому у покрытых ею солнечных панелей резко снижается КПД.

Из-за потребности в прямых солнечных лучах монокристаллические солнечные панели устанавливаются в основном на открытых площадках или на высоте. Чем ближе местность к экватору и чем больше в ней солнечных дней, тем более предпочтительна установка именно этого типа фотоэлектрических элементов.

Поликристаллические солнечные батареи

Поликристаллические кремниевые панели (multi-Si) имеют неравномерный по интенсивности синий окрас из-за разносторонней ориентированности кристаллов. Чистота кремния, используемого при их производстве, несколько ниже, чем у монокристаллических аналогов.

Разнонаправленность кристаллов обеспечивает высокий КПД при рассеянном свете – 12-18%. Он ниже, чем в однонаправленных кристаллах, но в условиях пасмурной погоды такие панели оказываются более эффективны.

Неоднородность материала приводит и к снижению себестоимости производства кремния. Очищенный металл для поликристаллических солнечных панелей без особых ухищрений заливается в формы.

На производстве используются специальные технические приемы для формирования кристаллов, однако их направленность не контролируется. После остывания кремний нарезают слоями и обрабатывают по специальному алгоритму.

Поликристаллические панели не требуют постоянной ориентации в сторону солнца, поэтому для их размещения активно используются крыши домов и промышленных зданий.

К достоинствам солнечных батарей с разнонаправленными кристаллами относят:

  1. Высокая эффективность в условиях рассеянного света.
  2. Возможность стационарного монтажа на крышах зданий.
  3. Меньшая стоимость по сравнению с монокристаллическими панелями.
  4. Длительность эксплуатации – падение эффективности через 20 лет эксплуатации составляет всего 15-20%.

Недостатки у поликристаллических панелей также имеются:

  1. Пониженный КПД со значением 12-18%.
  2. Относительная громоздкость – требуется больше пространства для установки из расчета на единицу мощности в сравнении с монокристаллическими аналогами.

Поликристаллические солнечные панели завоевывают всё большую рыночную долю среди других кремниевых батарей. Это обеспечивается широкими потенциальными возможностями для удешевления стоимости их производства. Ежегодно увеличивается и КПД таких панелей, стремительно приближаясь к 20% у массовых продуктов.

Солнечные панели из аморфного кремния

Механизм производства солнечных панелей из аморфного кремния принципиально отличается от изготовления кристаллических фотоэлектрических элементов. Здесь используется не чистый неметалл, а его гидрид, горячие пары которого осаждаются на подложку.

В результате такой технологии классические кристаллы не образуются, а затраты на производство резко снижаются.

На данный момент существует уже три поколения панелей из аморфного кремния, в каждом из которых заметно повышается КПД. Если первые фотоэлектрические модули имели эффективность 4-5%, то сейчас на рынке массово продаются модели второго поколения с КПД 8-9%.

Аморфные панели последней разработки имеют эффективность до 12% и уже начинают появляться в продаже, но они пока ещё достаточно дорогие.

За счет особенностей данной производственной технологии, создать слой кремния можно как на жесткой, так и на гибкой подложке. Из-за этого модули из аморфного кремния активно используются в гибких тонкоплёночных солнечных модулях. Но варианты с эластичной подложкой стоят намного дороже.

Физико-химическая структура аморфного кремния позволяет максимально поглощать фотоны слабого рассеянного света для генерации электроэнергии. Поэтому такие панели удобны для применения в северных районах с большими свободными площадями.

Не снижается эффективность батарей на основе аморфного кремния и при высокой температуре, хотя они и уступают по этому параметру панелям из арсенида галлия.

Подытоживая, можно указать такие преимущества аморфных солнечных панелей:

  1. Универсальность – возможность изготовления гибких и тонких панелей, монтаж батарей на любые архитектурные формы.
  2. Высокий КПД при рассеянном свете.
  3. Стабильная работа при высоких температурах.
  4. Простота и надежность конструкции. Такие панели практически не ломаются.
  5. Сохранение работоспособности в сложных условиях – меньшее падение производительности при запыленности поверхности, чем у кристаллических аналогов

Срок службы таких фотоэлектрических элементов, начиная со второго поколения, составляет 20-25 лет при падении мощности в 15-20%. К недостаткам панелей из аморфного кремния можно отнести лишь потребность в бо́льших площадях для размещения оборудования требуемой мощности.

Обзор бескремниевых устройств

Некоторые солнечные панели, изготовленные с применением редких и дорогостоящих металлов, имеют КПД более 30%. Они в разы дороже своих кремниевых аналогов, но всё-таки заняли высокотехнологичную торговую нишу, благодаря своим особенным характеристикам.

Солнечные панели из редких металлов

Существует несколько типов солнечных панелей из редких металлов, и не все они имеют КПД выше, чем у монокристаллических кремниевых модулей.

Однако способность работать в экстремальных условиях позволяет производителям таких солнечных панелей выпускать конкурентоспособную продукцию и проводить дальнейшие исследования.

Основными сплавами, применяемыми для изготовления фотоэлектрических элементов, являются теллурид кадмия (CdTe), селенид индия- меди-галлия (CIGS) и селенид индия-меди (CIS).

Кадмий – токсический металл, а индий, галлий и теллур являются довольно редкими и дорогостоящими, поэтому массовое производство солнечных панелей на их основе даже теоретически невозможно.

КПД таких панелей находится на уровне 25-35%, хотя в исключительных случаях может доходить до 40%. Ранее их применяли в основном в космической отрасли, а сейчас появилось новое перспективное направление.

Из-за стабильной работы фотоэлементов из редких металлов при температурах 130-150°C их используют в солнечных тепловых электростанциях. При этом лучи солнца от десятков или сотен зеркал концентрируются на небольшой панели, которая одновременно генерирует электроэнергию и обеспечивает передачу тепловой энергии водяному теплообменнику.

В результате нагрева воды образуется пар, который заставляет вращаться турбину и генерировать электроэнергию. Таким образом солнечная энергия преобразуется в электрическую одновременно двумя путями с максимальной эффективностью.

Полимерные и органические аналоги

Фотоэлектрические модули на основе органических и полимерных соединений начали разрабатывать только в последнем десятилетии, но исследователи уже добились значительных успехов. Наибольший прогресс демонстрирует европейская компания Heliatek, которая уже оснастила органическими солнечными панелями несколько высотных зданий.

Толщина её рулонной пленочной конструкции типа HeliaFilm составляет всего 1 мм.

При производстве полимерных панелей используются такие вещества, как углеродные фуллерены, фталоцианин меди, полифенилен и другие. КПД таких фотоэлементов уже достигает 14-15%, а стоимость производства в разы меньше, чем кристаллических солнечных панелей.

Остро стоит вопрос срока деградации органического рабочего слоя. Пока что достоверно подтвердить уровень его КПД через несколько лет эксплуатации не представляется возможным.

Преимуществами органических солнечных панелей являются:

  • возможность экологически безопасной утилизации;
  • дешевизна производства;
  • гибкая конструкция.

К недостаткам таких фотоэлементов можно отнести относительно низкий КПД и отсутствие достоверной информации о сроках стабильной работы панелей. Возможно, что через 5-10 лет все минусы органических солнечных фотоэлементов исчезнут, и они станут серьезными конкурентами для кремниевых пластин.

Какую солнечную панель выбрать?

Выбор солнечных панелей для загородных домов на широте 45-60° не труден. Здесь стоит рассматривать лишь два варианта: поликристаллические и монокристаллические кремниевые панели.

При дефиците места предпочтение лучше отдать более эффективным моделям с односторонней ориентацией кристаллов, при неограниченной площади рекомендуется приобрести поликристаллические батареи.

Выбирать конкретного производителя, требуемую мощность и дополнительное оборудование лучше при участии менеджеров компаний, занимающихся продажей и установкой такого оборудования. Следует знать, что качество и цена фотоэлектрических модулей у крупнейших производителей отличаются мало.

Следует учитывать, что при заказе комплекта оборудования «под ключ», стоимость самих солнечных панелей будет составлять всего лишь 30-40% от общей суммы. Сроки окупаемости таких проектов составляют 5-10 лет, и зависят от уровня энергопотребления и возможности продажи излишков электроэнергии в городскую сеть.

Некоторые мастера предпочитают собирать солнечные батареи собственноручно. На нашем сайте есть статьи с подробным описанием технологии изготовления таких панелей, их подключению и обустройству отопительных гелиосистем .

Выводы и полезное видео по теме

Представленные видеоролики показывают работу различных солнечных панелей в реальных условиях. Также они помогут разобраться в вопросах выбора сопутствующего оборудования.

Правила выбора солнечных панелей и сопутствующего оборудования:

Виды солнечных панелей:

Тестирование монокристаллической и поликристаллической панелей:

Для населения и небольших промышленных объектов реальной альтернативы кристаллическим кремниевым панелям пока что нет. Но темпы разработки новых типов солнечных батарей позволяют надеяться, что скоро энергия солнца станет главным источником электроэнергии во многих загородных домах.

Всем заинтересованным в вопросе выбора и использования солнечных батарей предлагаем оставлять комментарии, задавать вопросы и участвовать в обсуждениях. Форма для связи расположена в нижнем блоке.

Читайте также:  Летний домик своими руками. Идеи и фото

Тонкости процесса установки солнечных батарей

Альтернативные источники получения энергии в последние десятилетия становятся все более популярными, особенно распространены солнечные батареи. Преимущества такого источника в том, что он практически неиссякаем, по крайней мере, в следующие пять миллиардов лет Солнце будет отдавать планете свою энергию и тепло. Именно поэтому производители не смогли обойти такой уникальный природный дар и создали солнечные батареи, которые эффективно собирают и аккумулируют энергию нашего главного светила.

Особенности

В наши дни максимальное распространение имеют батареи на базе фотоэлектрических поликристаллов. Такие модели отличаются оптимальным сочетанием стоимости и объемом выделяемой энергии, они характеризуются насыщенно-синей окраской и кристаллической структурой основных элементов. Они очень просты в монтаже, ведь справиться с их установкой в своем частном доме и на дачном участке сможет даже мастер без большого опыта работы. Монокристаллические фотоэлектрические панели являются вторыми по популярности.

По своему КПД они эффективнее, чем поликристаллические модификации, однако, их стоимость гораздо выше, а монтаж значительно сложнее. Такие панели характеризуются многоугольной формой заполняющих элементов.

Солнечные батареи, которые изготовлены с использованием аморфного кремния, отличаются довольно низкой эффективностью. Однако их цены несколько ниже, чем стоимость аналогов, поэтому модель пользуется спросом у собственников загородных домов. На данный момент подобные изделия составляют 85% рынка. Они не могут похвастаться высокой мощностью и модификации из теллурида кадмия, в основе их производства лежит высокотехнологичная пленочная методика: несколько сотен микрометров вещества наносят тончайшим слоем на прочную поверхность. Примечательно, что при очень низком уровне эффективности изделия его мощность довольно высокая.

Еще одним вариантом батарей, работающих от солнечной энергии, являются разновидности на базе полупроводника CIGS. Как и предыдущий вариант, они производятся по пленочной технологии, однако, показатель их эффективности гораздо выше. Отдельно стоит остановиться на механизме работы солнечных источников тепла и света. Главное – это четко осознавать, что общее количество вырабатываемой энергии никак не может находиться в зависимости от степени эффективности самого устройства, поскольку обычно все типы подобных устройств дают примерно идентичную мощность. Основная разница состоит лишь в том, что панели, которые имеют максимальную эффективность, требуют меньше места для своей установки.

К примеру, 8 квадратных метров монокристаллических изделий дают 1 кВт энергии, а вот для получения этого же количества тепла батареям из кремния потребуется уже 20 кв. м. Ну и, конечно же, интенсивность и время воздействия солнечного света оказывает большое значение на окончательную выработку тепла.

Солнечные батареи имеют следующие преимущества:

  • экологичность установки;
  • длительный срок использования, на протяжении которого эксплуатационные особенности панелей остаются неизменно высокими;
  • технологии довольно редко ломаются, поэтому не нуждаются в сервисном и техническом обслуживании, а также дорогостоящем ремонте;
  • использование батарей на основе энергии солнца позволяет сократить расходы на электричество и газ в доме;
  • солнечные батареи отличаются исключительной простотой в использовании.

Впрочем, без недостатков тоже не обошлось, среди наиболее существенных можно обозначить следующие:

  • высокая сцена панелей;
  • потребность в установке разнообразного дополнительного оборудования для эффективной синхронизации энергии, получаемой от батареи, и того что получается от традиционных источников;
  • панели не могут использоваться в контакте с такими приборами, которые требуют высоких мощностей.

Схема подключения

Энергия, которая вырабатывается солнечными батареями, не имеет технической возможности напрямую использоваться для работы каких-либо электрических приборов. Для выделения необходимого для работы напряжения используют своеобразные инверторы, расположенные между панелью и основной сетью потребления.

При этом нужно знать три основных типа подключения солнечных панелей.

  • Автономное подключение. Этот вариант чаще других применяется в тех территориальных зонах, где отсутствует какая-либо централизованная сеть электроснабжения. В этом случае конструкцию формируют аккумуляторные высокомощные батареи. Принцип их работы состоит в накапливании внутри себя энергии в светлое время. Когда наступает время недостаточного освещения, накопленные потоки и перенаправляются в сеть.

  • Резервное подключение. Этот способ оптимален в местах, где проведено централизованное электроснабжение через сеть переменного тока. Создание резервной системы получения энергии в данном случае используется как запасной вариант, потребность в котором может возникнуть в случае аварийных ситуаций. Перебои с электроснабжением – это далеко не редкость для дачи и в загородных хозяйствах и территориях, поэтому многие домовладельцы создают дополнительные возможности получения тепла и света.
  • Последовательное подключение к сети. Чтобы подключить систему к электросети, этот метод предполагает формирование избыточной солнечной энергии и ее дальнейшего поступления в сеть для окончательной продажи.

Монтаж

Солнечные панели крепятся на особую конструкцию, соединение с которой обуславливают способность фотоэлементов выдерживать любые неблагоприятные атмосферные воздействия, такие как сильный ветер, дождь или снег, а также способствует формированию корректного угла наклона.

Такая конструкция представлена в продаже в следующих вариантах:

  • наклонная – подобные системы оптимальны для монтажа на скатной кровле;
  • горизонтальная – эта конструкция крепится к плоским крышам;
  • свободностоящая – установить батареи подобного типа можно на крышах различного типа и размера.

Непосредственно процесс установки батарей проводится по следующей схеме:

  • для крепления каркаса панели необходимы угольники из металла размером 50х50 мм, а кроме того, потребуются угольники 25х25 мм, которые используют для распорных перекладин. Присутствие этих деталей позволяет добиться требуемой крепости и надежной устойчивости опорной конструкции, а также придает требуемую степень наклона;
  • нужно собрать каркас, для этого понадобятся болты размером 6 и 8 м;
  • конструкция крепится под покрытие кровли при помощи 12-миллиметровых шпилек;
  • в подготовленных угольниках формируются небольшие отверстия, в них закрепляются панели, а для более прочного сцепления следует применять шурупы;
  • во время монтажных работ следует особенное внимание уделить каркасу – в нем не должны возникать какие-либо перекосы. В противном случае может возникнуть перенапряжение системы, которое приведет к растрескиванию стекол.

Монтаж солнечных источников тепла и света на лоджии или на балконе происходит по подобной схеме. Единственным исключением является то, что каркас крепится на наклонной плоскости. Он монтируется между основной несущей стеной здания и торцом строения, обязательно на солнечной стороне. Самостоятельная сборка и установка солнечных батарей всех типов не требует опыта ведения строительных работ, однако, некоторые навыки монтажных работ все-таки потребуются. Если есть желание, то можно смело заняться установкой самостоятельно, однако, перед этим было бы неплохо почитать специальную литературу об особенностях установки палей и изучить мастер-классы, которые имеются в интернете, ну и, конечно же, запастись необходимыми инструментами.

Плюсы от работы своими руками очевидны – это экономия немалых денег на услугах специалистов, а также колоссальный опыт, который, возможно, понадобится в дальнейшем. В то же время если личных способностей окажется недостаточно, то можно не только потерять время, но и стать причиной поломки панелей либо их низкой эффективности.

Следует учитывать, что только специалисты могут оказать по-настоящему квалифицированную помощь по монтажу модулей конструкции. В случае поломок они будут нести ответственность за ремонт и замену вышедшего из строя оборудования.

Советы

Специалисты дают несколько рекомендаций о том, как правильно уложить и соединить солнечные батареи.

  • Чаще всего изделия, использующие альтернативные источники энергии, крепят на кровле либо на стенах домостроения, реже используют специальные надежные опоры. В любом случае должны быть полностью исключены какие-либо затемнения, то есть батареи должны ориентироваться таким образом, чтобы на них не падала тень от высоких деревьев и расположенных по соседству зданий.
  • Монтаж набора пластин проводят рядами, их расположение параллельное, в связи с этим крайне важно предусмотреть, чтобы вышерасположенные ряды не бросали тень на те, что находятся ниже. Это требование очень важно, поскольку полное или частичное затенение провоцирует сокращение и даже полное прекращение какой-либо выработки энергии, кроме того, может возникнуть эффект образования «обратных токов», что зачастую служит причиной поломки оборудования.

  • Грамотная ориентация относительно солнечного света имеет принципиальное значение для эффективности и результативной работы панелей. Очень важно, чтобы поверхность получала весь возможный поток ультрафиолетовых лучей. Правильную ориентацию рассчитывают, основываясь на данных о географическом расположении строения. К примеру, если монтаж панелей производится с северной стороны здания, то панели следует ориентировать на юг.
  • Не меньшее значение имеет и общий угол наклона конструкции, он также определяется географической ориентацией строения. Специалисты рассчитали, что этот показатель должен соответствовать широте расположения дома, а поскольку солнце в зависимости от времени года несколько раз меняет свое удаление расположения над горизонтом, то имеет смысл продумать корректировку окончательного угла монтажа батарей. Обычно коррекция не превышает 12 градусов.

  • Батареи нужно укладывать таким образом, чтобы обеспечить к ним свободный доступ, поскольку в холодное зимнее время потребуется периодически очищать их от нападавшего снега, а в теплое время года – от дождевых разводов, которые существенно снижают эффективность использования батарей.
  • На сегодняшний день в продаже имеется немало китайских и европейских моделей солнечных батарей, которые отличаются стоимостью, поэтому каждый может устанавливать оптимальную для своего бюджета модель.

В заключение следует обратить внимание на то, что наибольшую выгоду от применения солнечных батарей получит наша планета, поскольку данный источник энергии не причиняет абсолютно никакого вреда окружающей среде. Если вам как потребителю небезразлично будущее нашей Земли, потенциал ее земельных ресурсов и сохранение природных богатств, то солнечные батареи – это лучший выбор.

О том, как установить солнечную батерею на крышу дома, смотрите в следующем видео.


Солнечные батареи для дома: составные элементы, принцип работы, виды, преимущества и недостатки использования, монтаж

Постоянно растущие тарифы на электричество, перебои в сети напряжения и регулярные отключения всё больше подталкивает хозяев частных домов использовать солнце в качестве источника энергии.

Уже не в диковинку увидеть сооружения из солнечных модулей, закреплённых на кровле или отдельно стоящих на подставке.

Современные домашние станции отличаются большой мощностью, способностью обеспечивать бесперебойную работу бытовой технике в автономном режиме. Эффективность работы и производительность зависят от региона и климатических особенностей.

Посмотрите видео как собрать солнечную батарею своими руками

Составные элементы солнечных батарей

Мини станции на солнечных батареях состоят из следующих элементов:

Кроме того понадобятся:

— контрольные приборы за отслеживанием заряда в аккумуляторах;

— устройство отбора мощности у батарей.

Принцип работы солнечной батареи

Принцип работы батарей на солнечной энергии состоит из цепи физических процессов:

• кремниевые пластины улавливают солнечную энергию;

• нагретые пластины высвобождают электроны;

• активизация электронов заставляет их двигаться по проводникам;

• проводники направляют поток электронов в аккумулятор (чаще используют несколько накопителей энергии), в результате чего происходит подзарядка;

• преобразователь меняет постоянный ток на переменный;

• с помощью проводных подключений осуществляется подача питания бытовой технике.

Виды солнечных батарей

Подбор типа батарей с необходимыми параметрами обеспечит максимальную производительность с учётом климатических особенностей региона. Выпускается несколько разновидностей плит, отличающихся структурой поверхностного слоя и технологическим процессом изготовления.

• Плиты с покрытием из монокристаллического кремния относятся к самым дорогостоящим фотоэлементам, что обусловлено способностью накопления солнечной энергии при сильной облачности. Производство включает сложный процесс медленного остывания кремниевого расплава. После остывания материал разрезается и подвергается дополнительной термообработке. Обычно пластины имеют тёмно-синий цвет.

• Плиты с покрытием из аморфного кремния пока не выпускаются в промышленных объёмах. Перспективное направление находится в стадии развития. Сложность производственного процесса заключается в создании одинаковой направленности кремниевых кристаллов по всей поверхности плёнки, толщина которой не превышает 100 микрон.

• Покрытия рабочей поверхности поли- или монокристаллическим кремнием имеют более доступную стоимость в связи с использованием упрощённой технологией производства. Электротехнические показатели немного уступают другим типам солнечных батарей.

Параметры установок

При выборе солнечных батарей уделяют внимание техническим параметрам и характеристикам. Качественные и высокопроизводительные изделия должны иметь следующие параметры:

• показатель КПД свыше 20%;

• высокий уровень сопротивления;

• стекло должно быть закалённым;

• устойчивость к плохим погодным условиям;

• в южных регионах предпочтение отдаётся поликристаллическим моделям;

• для северных регионов рекомендуются монокристаллические плиты.

Преимущества использования солнечных батарей

• за энергию не нужно платить;

• постоянное пополнение запасов ресурса;

• экологичность и безопасность;

Читайте также:  Деревянные дома - качество и престиж

• может использоваться в качестве резерва и основного источника;

• длительный срок эксплуатации.

Недостатки использования солнечных батарей

• высокая цена оборудования;

• погодные катаклизмы отрицательно влияют на работу приборов;

• необходимо выделить место под установку;

• в зимнее время снижается производительность;

• для увеличения мощности требуется модернизация системы.

Примерная стоимость батарей

Доступной альтернативную систему добычи электроэнергии назвать нельзя. Однако дорогое оборудование может окупиться уже через 3-5 лет, в зависимости от мощности и климатических особенностей. Станция мощностью 20-25 кВт, с возможностью отопления дома среднего размера, может обойтись в 800 000 рублей.

Монтаж солнечной батареи

Сооружение станции на солнечных батареях имеет преимущество перед укомплектованным оборудованием возможностью постоянно наращивать мощность, и оптимизировать процесс.

Начать изготовление станции нужно с разработки проекта. На этом этапе учитываются следующие факторы:

— место установки модулей;

— расчёт угла наклона конструкции;

— если предполагается использовать кровлю под установку, просчитать несущую способность кровельного каркаса, стен и фундамента;

— отдельное помещение или уголок в доме под аккумуляторы.

После приобретения необходимого оборудования и фотоэлементов выполняется монтаж.

• Каркас собирается из алюминиевого уголка шириной 35 мм. Объем ячейки должен соответствовать размерам необходимого количества фотоэлементов (835х690 мм).

• В заготовленной раме из алюминия сделать отверстия для метизов.

• Внутреннюю часть уголка обработать герметиком в два слоя.

• В раму уложить лист из оргстекла, поликарбоната, плексигласа или другого материала. Уплотнить соединения рамы и листа путём лёгкого прижима поверхностей по периметру. Оставить на открытом воздухе до полного высыхания.

• Зафиксировать стекло десятью метизами в отверстия, размещённые по углам и сторонам рамки.

• Перед креплением фотоэлементов очистить поверхность от пыли.

• Припаять проводник к плитке, предварительно протерев контакты спиртом и уложив на них флюс. Во время работы с кристаллом нужно избегать давления на него. Хрупкая структура может разрушиться.

• Уложить по всей длине контакта шину и медленно провести по ней горячим паяльником.

• Перевернуть пластины и выполнить пайку аналогичным образом.

• Выложить фотоэлементы на оргстекло в рамке, зафиксировать их с помощью монтажной ленты. Раскладку легче выполнить после разметки. Рекомендуется также использовать для крепления силиконовый клей. Наносить его нужно точечным способом. Одной капли на плитку вполне достаточно.

• Располагать кристаллы нужно с соблюдением зазора 3-5 мм, чтобы при нагревании материала не деформировалась поверхность.

• Выполнить соединение проводников по краям фотоэлементов с общими шинами.

• Специальным прибором протестировать качество пайки.

• Герметизировать панель, нанеся герметик между плитками. Осторожно придавить их пальцами, чтобы края плотно прилегли к стеклу. Также необходимо промазать герметиком края рамки.

• С боковой стороны каркаса установить соединительный разъем, к которому подключить диоды Шоттки.

• Закрыть рамку защитным стеклом. Уплотнить все соединения для предотвращения попадания внутрь влаги.

• Лицевую сторону панели обработать лаком.

• Закрепить панель на кровлю или другое место, расположенное на солнечной стороне.

Как работают солнечные батареи: принцип, устройство, материалы

Солнечные батареи считаются очень эффективным и экологически чистым источником электроэнергии. В последние десятилетия данная технология набирает популярность по всему миру, мотивируя многих людей переходить на дешевую возобновляемую энергию. Задача этого устройства заключается в преобразовании энергии световых лучей в электрический ток, который может использоваться для питания разнообразных бытовых и промышленных устройств.

Правительства многих стран выделяют колоссальные суммы бюджетных средств, спонсируя проекты, которые направлены на разработку солнечных электростанций. Некоторые города полностью используют электроэнергию, полученную от солнца. В России эти устройства часто используются для обеспечения электроэнергией загородных и частных домов в качестве отличной альтернативы услугам централизованного энергоснабжения. Стоит отметить, что принцип работы солнечных батарей для дома достаточно сложный. Далее рассмотрим подробнее, как работают солнечные батареи для дома подробно.

Немного истории

Первые попытки использования энергии солнца для получения электричества были предприняты еще в середине двадцатого века. Тогда ведущие страны мира предпринимали попытки строительства эффективных термальных электростанций. Концепция термальной электростанции подразумевает использование концентрированных солнечных лучей для нагревания воды до состояния пара, который, в свою очередь, вращал турбины электрического генератора.

Поскольку, в такой электростанции использовалось понятие трансформации энергии, их эффективность была минимальной. Современные устройства напрямую преобразуют солнечные лучи в ток благодаря понятию фотоэлектрический эффект.

Современный принцип работы солнечной батареи был открыт еще в 1839 году физиком по имени Александр Беккерель. В 1873 году был изобретен первый полупроводник, который сделал возможным реализовать принцип работы солнечной батареи на практике.

Принцип работы

Как было сказано раньше, принцип работы заключается в эффекте полупроводников. Кремний является одним из самых эффективных полупроводников, из известных человечеству на данный момент.

При нагревании фотоэлемента (верхней кремниевой пластины блока преобразователя) электроны из атомов кремния высвобождаются, после чего их захватывают атомы нижней пластины. Согласно законам физики, электроны стремятся вернуться в свое первоначальное положение. Соответственно, с нижней пластины электроны двигаются по проводникам (соединительным проводам), отдавая свою энергию на зарядку аккумуляторов и возвращаясь в верхнюю пластину.

Эффективность фотоэлементов, созданных при помощи монокристаллического метода нанесения кремния, является существенно выше, поскольку в такой ситуации кристаллы кремния имеют меньше граней, что позволяет электронам двигаться прямолинейно.

Устройство

Конструкция солнечной батареи очень проста.

Основу конструкции устройства составляют:

  • корпус панели;
  • блоки преобразования;
  • аккумуляторы;
  • дополнительные устройства.

Корпус выполняет исключительно функцию скрепления конструкции, не имея больше никакой практической пользы.

Основными элементами являются блоки преобразователей. Это и есть фотоэлемент, состоящий из материала-полупроводника, которым является кремний. Можно сказать, что состоят солнечные батареи, устройство и принцип работы которых всегда одинаковый, из каркаса и двух тонких слоев кремния, который может быть нанесен на поверхность, как монокристаллическим, так и поликристаллическим методом.

От метода нанесения кремния зависит стоимость батареи, а также ее эффективность. Если кремний наносится монокристаллическим способом, то эффективность батареи будет максимально высокой, как и стоимость.

Если говорить о том, как работает солнечная батарея, то не нужно забывать об аккумуляторах. Как правило, используется два аккумулятора. Один является основным, второй — резервным. Основной накапливает электроэнергию, сразу же направляя ее в электрическую сеть. Второй накапливает избыточную электроэнергию, после чего направляет ее в сеть, когда напряжение падает.

Среди дополнительных устройств можно выделить контроллеры, которые отвечают за распределение электроэнергии в сети и между аккумуляторами. Как правило, они работают по принципу простого реостата.

Очень важными элементами солнечной назвать диоды. Данный элемент устанавливается на каждую четвертую часть блока преобразователей, защищая конструкцию от перегрева из-за избыточного напряжения. Если диоды не установлены, то есть большая вероятность, что после первого дождя система выйдет из строя.

Как подключается

Как было сказано раньше, устройство солнечной батареи достаточно сложное. Правильная схема солнечной батареи поможет добиться максимальной эффективности. Подключать блоки преобразователей необходимо при помощи параллельно-последовательного способа, что позволит получить оптимальную мощность и максимально эффективное напряжение в электрической сети.

Разновидности солнечных батарей

Существует несколько разновидностей фотоэлементов для солнечных батарей, которые отличаются между собой строением кристаллов кремния.

Выделяют три вида фотоэлементов:

  • поликристаллические;
  • монокристаллические;
  • аморфные.

Первый вид панелей является более дешевым, но менее эффективным, поскольку, если кремний нанесен поликристаллическим способом, то электроны не могут двигаться прямолинейно.

Монокристаллические фотоэлементы отличаются максимальным КПД, который достигает 25 %. Стоимость таких батарей выше, но для получения 1 киловатта нужна существенно меньшая площадь фотоэлементов, чем при использовании поликристаллических панелей.

Из аморфного кремния изготавливают гибкие фотоэлементы, но их КПД самый низкий и составляет 4-6 %.

Преимущества и недостатки

Основные преимущества солнечных батарей:

  • солнечная энергия абсолютно бесплатная;
  • позволяют получать экологически чистую электроэнергию;
  • быстро окупаются;
  • простая установка и принцип работы.

  • большая стоимость;
  • для удовлетворения потребностей небольшой семьи в электроэнергии нужна достаточно большая площадь фотоэлементов;
  • эффективность существенно падает в облачную погоду.

Как добиться максимальной эффективности

При покупке солнечных батарей для дома очень важно подобрать конструкцию, которая сможет обеспечить жилище электроэнергией достаточной мощности. Считается, что эффективность солнечных батарей в пасмурную погоду составляет приблизительно 40 Вт на 1 квадратный метр за час. В действительности, в облачную погоду мощность света на уровне земли составляет приблизительно 200 Вт на квадратный метр, но 40 % солнечного света – это инфракрасное излучение, к которому солнечные батареи не восприимчивы. Также стоит учитывать, что КПД батареи редко превышает 25 %.

Иногда энергия от интенсивного солнечного света может достигать 500 Вт на квадратный метр, но при расчетах стоит учитывать минимальные показатели, что позволит сделать систему автономного электроснабжения бесперебойной.

Каждый день солнце светит в среднем по 9 часов, если брать среднегодовой показатель. За один день квадратный метр поверхности преобразователя способен выработать 1 киловатт электроэнергии. Если за сутки жильцами дома израсходуется приблизительно 20 киловатт электроэнергии, то минимальная площадь солнечных панелей должна составлять приблизительно 40 квадратных метров.

Однако, такой показатель потребления электроэнергии на практике встречается редко. Как правило, жильцы израсходуют до 10 кВТ в сутки.

Если говорить о том, работают ли солнечные батареи зимой, то стоит помнить, что в данную пору года сильно снижается длительность светового дня, но, если обеспечить систему мощными аккумуляторами, то получаемой за день энергии должно быть достаточно с учетом наличия резервного аккумулятора.

При подборе солнечной батареи очень важно обращать внимание на емкость аккумуляторов. Если нужны солнечные батареи работающие ночью, то емкость резервного аккумулятора играет ключевую роль. Также устройство должно отличаться стойкостью к частой перезарядке.

Несмотря на тот факт, что стоимость установки солнечных батарей может превысить 1 миллион рублей, затраты окупятся уже в течении нескольких лет, поскольку энергия солнца абсолютно бесплатна.

Видео

Как устроена солнечная батарея, расскажет наше видео.

Как установить солнечные батареи для дома?

В связи с постоянным повышением тарифов на энергоносители и стимуляцией зеленой энергетики в ряде государств, для обывателей стал актуальным вопрос организации собственной солнечной электростанции. Для чего многими владельцами частных территорий и квартир осуществляется установка солнечных батарей для дома. Но далеко не все автономные источники выдают ожидаемые от них результаты, а некоторые вообще не функционируют. Поэтому далее мы рассмотрим основные нюансы использования солнечных батарей и детальный алгоритм установки, что позволит вам добиться максимального эффекта.

Что следует учесть на этапе проектирования?

Перед тем как установить автономную электростанцию, важно выбрать наиболее подходящее место для установки солнечных панелей, их тип и назначение. В соответствии с этими критериями определите параметры солнечных батарей и комплектующего оборудования. Если вы собираетесь использовать домашнюю электростанцию для выработки электроэнергии номиналом в 220 В, то вам понадобятся такие элементы:

Рис. 1: устройство солнечной электростанции

  • Фотоэлектрический преобразователь – позволяет генерировать электрическую энергию из солнечного излучения посредством химической реакции. Характеризуются мощностью на 1м 2 площади, производительностью и типом. Общее количество выбирается в зависимости от нужд потребителя и планируемых объемов выработки.
  • Аккумуляторная батарея – накапливает электрический заряд, получаемый от солнечной батареи для питания приборов в темное время суток. Поэтому емкость выбирается с запасом из расчета, что в пасмурную погоду заряд будет происходить значительно хуже.
  • Контроллер заряда – осуществляет перераспределение электроэнергии от солнечных батарей к аккумулятору, а при достижении ним максимума, передает избыток во внешнюю сеть. При отсутствии такой системы, снижает электрическую мощность, поступающую на аккумулятор до минимума.
  • Инвертор – предназначен для преобразования постоянного электрического напряжения, поступающего от фотоэлектрического элемента, в переменное, используемое в бытовых сетях. Они же позволяют владельцам солнечных батарей продавать избыток электричества от домашней электростанции. Рис. 2. Принцип реализации солнечной электроэнергии
  • Соединительные провода – осуществляют передачу электроэнергии по всей электрической сети солнечной установки. В зависимости от места расположения, к ним предъявляются различные требования, к примеру, прокладываемые на улице должны быть устойчивыми к воздействию внешних факторов.

Несмотря на важность каждого элемента домашнего генератора свободной энергии, особое внимание следует уделить выбору фотоэлектрического модуля, так как от этого будет зависеть и продуктивность, и качество работы всей системы.

Выбор солнечной батареи

В качестве источника электроэнергии сегодня популярны три типа солнечных батарей:

Читайте также:  Пристройка к дому своими руками: лучшие идеи с фото

  • С поликристаллическим модулем – отличаются стабильными показателями генерации, не зависимо от интенсивности солнечных лучей. Также солнечные батареи на основе поликристаллического кремния отличаются сравнительно небольшим КПД – от 9 до 18%, в зависимости от производителя. Со временем КПД не снижается, но к недостаткам поликристаллических элементов следует отнести сравнительно небольшой срок службы – порядка 10 лет.
  • С монокристаллическим модулем – такие панели неравномерно вырабатывают электричество в солнечную и пасмурную погоду, теряют мощность со временем эксплуатации. Но КПД автономного электроснабжения на основе монокристаллического кремния находится в пределах от 12 до 25%. А срок службы монокристаллических панелей составляет порядка 25 лет. Рис. 3. поликристаллический и монокристаллический модуль
  • С аморфными кристаллами – используются в гибких пластинах, отличаются довольно низким КПД – порядка 6%. Максимальная мощность, заявляемая производителем, значительно снижается со временем эксплуатации и может упасть на 20 – 40%. Срок службы довольно низкий – не более 5 лет. Рис. 4: аморфный модуль

Выбор места и способа установки

Оптимальная генерация электрического тока обеспечивается при условии попадания достаточного количества солнечного света на поверхность панели, поэтому близлежащие постройки и деревья не должны ее затенять. То же касается и способа размещения их друг относительно друга – верхние или боковые панели не должны закрывать собой соседние. Оптимальная выработка электроэнергии достигается при перпендикулярном попадании лучей на фотоэлектрический преобразователь, что тоже должно учитываться при выборе места.

Наиболее часто для установки солнечных батарей используются:

  • Крыши зданий – в зависимости от угла наклона, солнечные батареи могут располагаться как непосредственно на кровле, так и на специальной конструкции. Но далеко не каждый угол наклона подойдет для получения электричества, оптимальным считается от 0° до 40°. Рис. 5: солнечная батарея на крыше здания
  • Отдельно стоящие опоры – подходят для дома с приусадебным участком, на котором есть место под дополнительную конструкцию. Рис. 6: отдельно стоящие солнечные батареи
  • Стены – несмотря на горизонтальное положение, панель крепиться к наклонному каркасу. Рис. 7: солнечная батарея на стенах зданий
  • Лоджия или балкон – для покрытия фотоэлементами подходят как стены, так и крыша. Рис. 8: солнечная батарея на балконе

Помимо открытого пространства, не забывайте, что выбранная конструкция должна выдерживать и вес солнечной батареи. Это особенно актуально для строящихся или модернизируемых зданий, дабы та же крыша не провалилась под весом домашней электростанции, солнечного коллектора и прочего крышевого оборудования. По отношению к сторонам света ее устанавливают с юга. Расположенные на земле, обязательно приподымаются над поверхностью грунта не менее чем на полметра.

Заметьте, скопление на солнечном модуле пыли, снега, листьев, продуктов жизнедеятельности животных и насекомых существенно снижает эффективность их работы. Поэтому место установки должно предусматривать возможность ухода и периодического технического обслуживания.

Этапы установки солнечных батарей

После того, как вы заготовили все необходимое для домашней электростанции, подобрали место и составили схему расположения панелей, переходите непосредственно к установке. Для этого:

  • Соберите каркас – для этого подойдут любые прочные материалы (сталь, алюминий или дерево). Желательно использовать долговечные варианты, так как электростанция прослужит вам не один год. Рис. 9: Соберите каркас

В зависимости от места установки их можно изготавливать и собирать отдельно от монтажной площадки, но размеры должны учитывать габариты панелей заранее. Между крышей и батареей обязательно оставляйте воздушный зазор для вентиляции.

  • Если модули в панелях не спаяны между собой, обязательно произведите данную процедуру. Выполняйте ее крайне аккуратно, так как хрупкие детали можно легко повредить. Рис. 10: спаяйте модули

Если вы приобрели готовые панели, в которых ничего спаивать не нужно, сразу переходите к монтажу.

  • Установка готовых солнечных батарей не требует дополнительных манипуляций – главное надежно зафиксировать их на каркасе. Рис. 11: установите панели

Если вы собираете их из модулей, изготовьте основание из диэлектрического материала с отверстиями для вентиляции, установите клеевую основу и закройте герметичной прозрачной крышкой.

  • Припаяйте соединительные провода – панели между собой могут соединяться как последовательно, так и параллельно, но главное, не забудьте установить запирающий диод в цепь питания каждой из них. Это предотвратит обратный разряд аккумулятора в цепь модуля после захода солнца.
  • Подключите солнечную батарею к остальным элементам домашней электростанции.

Следует отметить, что положение солнца летом и зимой кардинально отличается, поэтому весьма эффективно выполнять регулировку угла наклона. Для этого можно предусмотреть соответствующий подвижный механизм в каркасе или опорном кронштейне.

Виды солнечных батарей

Содержание:

  1. Кремниевые солнечные батареи
  2. Плёночные солнечные батареи
  3. Что такое концентрационные солнечные модули
  4. Фотосенсибилизированные батареи

Какие бывают виды солнечных панелей?

Сегодня различные типы солнечных панелей набирают всё больше и больше популярности. И не зря, ведь помимо того, что население планеты Земля начинает задумываться об экологических источниках энергии, солнечные панели ещё и становятся всё более и более энергоэффективными. Конечно, самое основное что входит в любую солнечную систему энергообеспечения — это панели или батареи , поэтому важно разбираться что к чему. Конечно, система намного сложнее и в неё входят всякие стабилизаторы, инверторы и прочее, однако это не основной момент.

На данный момент типы солнечных батарей составляют такое разнообразие и их такое великое множество, что каждый потребитель желающий обзавестись подобным источником энергии задаётся вопросом: “А как выбрать солнечную батарею? Какие есть солнечные батареи?” Об этом наша статья: мы постараемся особо не влезая в дебри технологий разобраться на какие типы делятся батареи или панели, питающиеся от энергии солнца, ведь рынок пестрит выгодными предложениями и желаем продать Вам ту или иную систему. В первую очередь различаются солнечные модули материалами, принципом работы и принципом производства. Так давайте же разбираться что и почему.

Кремниевые солнечные батареи

Такой тип солнечных панелей отличается в первую очередь своим материалом, который, как можно догадаться из названия, представлен кремнием. Сегодня это самые популярные батареи на рынке. Это связано с тем, что кремний сравнительно легкодоступный материал, он недорогой и при этом обладает хорошими показателями производительности, по сравнению с конкурентными видами солнечных модулей. Производят их не только из кремния, но и в том числе из моно, поликристаллов в также аморфного кремния. В чём разница?

Монокристаллические солнечные батареи

Для производства солнечных батарей монокристаллического типа используют очищенный, самый чистый кремний. Такой вид солнечной панели выглядит как силиконовые соты, или ячейки, которые соединены в одну структуру. После того, как очищенный монокристалл затвердевает, его разделяют на супер тонкие пластины, толщиной до 300 мкм. Такие готовые пластины соединены тонкой сеткой из электродов. В сравнении с аморфными батареями, такие стоят дороже, ведь технология их производства в разы сложнее. При этом такие батареи стоит выбрать хотя бы за их высокий коэффициент полезного действия(КПД). На уровне 20%. Да, для солнечных батарей это хороший показатель.

Поликристаллические солнечные панели

Для того чтобы получить поликристаллы, кремниевую субстанцию медленно охлаждают. Такой подход к технологии производства значительно дешевле чем в предыдущем типе панелей, поэтому и стоит этот вид дешевле. При этом для изготовления требуется меньше энергии, а это ещё раз благотворно действует на цену. Но чем-то же нужно жертвовать? Поэтому у таких батарей КПД ниже — до 18%. Связано такое падение коэффициента с образованиями внутри поликристалла, которые снижают эффективность. Для того ещё лучше разобраться в различиях между первым и вторым типом батарей, взгляните на таблицу:

Сравнительная таблица монокристаллических и поликристаллических солнечных панелей:

Фактор Монокристаллы Поликристаллы
Разница в структуреКристаллы направлены в одну сторону, зёрна параллельныКристаллы направлены в разную стороны, не параллельны
Стабильность работыВысокаяМеньше
СтоимостьДорогостоящие батареиТакже дорогостоящие, но дешевле
Окупаемость2 годадо 3х лет
КПДдо 22%до 18%
Технология производстваСовершеннее, сложнее, точнееПроще, отсюда и низкая стоимость

Аморфные солнечные панели или батареи из аморфного кремния

  • Данный вид солнечных батарей можно отнести как к кремниевым (потому что материал изготовления — кремний) так и к плёночным, ведь изготовлены они по принципу производства плёночных батарей. Но всё же отличия есть.
  • Здесь используются не кристаллы кремния, а так называемый силан (кремневодород). Его наносят на подложку, внутри батарей. КПД у такого вида солнечных батарей намного ниже — около 5%. Но всё не так плохо! Есть и преимущества, среди которых можно назвать: намного лучшее поглощение (в 20 раз лучше), лучше работает при отсутствии прямого солнца, когда пасмурно, эластичность панелей.
  • Также бывают сочетания моно и поликристаллических панелей с аморфными. Такое сочетание позволяет соединить преимущества двух различных типов. Например, батареи лучше работают, когда солнца недостаточно для обычных кристаллических батарей.

Плёночные солнечные батареи

Плёночные панели — это следующий шаг развития источников питания на солнечной энергии. Шаг, который продиктован в первую очередь необходимостью снижения цен на производство батарей и стремлением к повышению энергоэффективности.

Плёночные батареи на основе теллурида кадмия

  • Кадмий — это материал, который обладает высоким уровнем светопоглощения, открытый как материал для солнечных батарей в 70-х годах. На сегодняшний день, этот материал применяется уже не только в космосе, на околоземной орбите, но и активно используется в качестве материала для солнечных панелей обычного, домашнего пользования.
  • Самой главной проблемой в использовании такого материала является его ядовитость. Однако исследования говорят о том, что уровень кадмия. который уходит в атмосферу, слишком мал, чтобы наносить вред здоровью человека. Также, несмотря на низкий КПД в районе 10%, стоит единица мощности в таких батареях меньше, чем у аналогов.

Плёночные панели на основе селенида меди-индия

Тип солнечных батарей из таких материалов используют медь, индий, селен, как полупроводник. Кстати, индий — это основной, очень необходимый материал, который используется в производстве жидкокристаллических мониторов. Поэтому, оставляя такой материал для этих целей, часто используют галлий, который замещает индий по своим функциям. КПД здесь выше, чем у батарей из теллурида кадмия — около 20%.

Полимерные солнечные панели

Вид солнечных батарей, который не так давно был изобретён и начал производиться. Здесь проводниками выступают полифенилен, фуреллены, фталоцианин меди. При этом такая плёнка очень тонкая — около 100 нм. Несмотря на низкий уровень КПД, около 5%, всё же можно выделить причины, почему стоит выбирать этот тип солнечных батарей: Доступность материалов, дешевизна, отсутствие вредных выделений в атмосферу. Так что такие батареи отлично подходят потребителям, ведь обладают отличной эластичностью и экологичностью.

Сравнительная таблица: виды солнечных батарей и уровень КПД

Напоследок, хотелось бы сравнить коэффициенты полезного действия каждого типа солнечных батарей, но не забывайте, что помимо КПД есть много других факторов, которые могут охарактеризовать каждый тип как с хорошей, так и плохой стороны.

КПДв процентах
Монокристаллические17-22%
Поликристаллические12-18%
Аморфные5-6%
Теллурид кадмия10-12%
Селенид меди-индия15-20%
Полимерные5-6%

Что такое концентрационные солнечные модули?

Концентрационные модули помогают более эффективно использовать площадь солнечных панелей, получая экономию площади почти в два раза. Однако такая система осложнена необходимостью инсталляции механического модуля, который бы поворачивал линзы в сторону солнца. Особенно такие установки необходимы в местах, где прямое излучение солнца есть в достатке на протяжении всего года.

Фотосенсибилизированные батареи

Фотосенсибилизирующий краситель опять-таки помогает оптимизировать приём солнечной энергии, но при этом солнечные панели работающие по этому принципу, скорее напоминают процесс фотосинтеза в природе. Впрочем, пока что это только концептуальная идея, не имеющая воплощения. Кто знает, может пока Вы соберётесь покупать солнечные панели, она уже будут вовсю продаваться на рынке.

Ну что, разобрались какие бывают солнечные батареи? Надеемся, эта статья поможет Вам определиться, какую батарею поставить для дома , но если после прочтения у Вас возникло ещё больше вопросов — милости просим на наш сайт, где Вы найдёте всю информацию про солнечные батареи и источники питания, работающие на солнечной энергии а также про различные виды солнечных панелей.

Ссылка на основную публикацию